Peritoneal Dialysis Prescription and Adequacy Monitoring

Annabelle N. Chua, MD

May 5, 2021

No financial disclosures relevant to this talk

Acknowledgment:

Some slides previously borrowed/modified from Dr. Christine Sethna

- Physiology of the peritoneal membrane
- •Clinical factors that impact peritoneal dialysis (PD) prescription in the pediatric population
- Role of dialysis adequacy to monitor the effectiveness of peritoneal dialysis

Why Peritoneal Dialysis?

Advantages

- Vascular access not required
- Improved fluid balance; less antihypertensive medications
- Fewer dietary restrictions
- Relatively safe and simple
- Allows for regular school attendance
- Better growth
- Better for infants
- Less travel to dialysis unit

Disadvantages

- Risk of infection (peritonitis, exit site and tunnel infections)
- Hernias
- Labor intensive; increased caregiver burden
 - Risk of non-adherence
- Decreased appetite
- Body image disturbance

Contraindications to PD

ABSOLUTE

- Omphalocele
- Gastroschisis
- Bladder Exstrophy
- Diaphragmatic hernia
- Obliterated peritoneal cavity
- Peritoneal membrane failure

RELATIVE

- Impending abdominal surgery
- Impending (<6months) livingdonor kidney transplantation
- Lack of appropriate caregiver for home therapy; lack of appropriate home environment

PD Prescription

Physiology of Peritoneal Membrane

PD Prescription Components

- Modality CAPD vs APD
- Solution
- Fill volume
- Dwell Time
- Number of Exchanges

Modality – Continuous Ambulatory Peritoneal Dialysis (CAPD)

- Provides continuous solute and fluid removal throughout the day and night
- Daytime exchanges ~5 hours
- Nighttime exchange ~9 hours
- Ease of use
- Low cost of equipment
- Often used in developing countries with limited resources available

Modality – Automated Peritoneal Dialysis (APD)

- Continuous Cycling (CCPD)
- Nightly Intermittent (NIPD)
- •Tidal (TPD)

Adapted APD

Fischbach et al Kidney International (2016) 89: 761-766

PD Rx: Modality

Determinants of Modality Choice

- Financial
- Center preference
- Geography
- Lifestyle
- Peritoneal membrane transport characteristics

PD Rx: Solution

Composition:

- Water
- Osmotic agent
 - Dextrose (1.5%, 2.5%, 4.25%)
 - Icodextrin
 - Amino acids
- Buffer
 - Lactate
 - Bicarbonate

- Electrolytes
 - Sodium 132-134 mEq/L
 - Chloride 96-105 mEq/L
 - Magnesium 0.25-0.5 mEq/L
 - Calcium 2-3.5 mEq/L

keC

- No potassium
- Additives
 - Heparin
 - Antibiotics

PD Rx: Solution

Time, hours

Kidney International 2002 62, S17-S22DOI: (10.1046/j.1523-1755.62.s81.4.x) Copyright © 2002 International Society of Nephrology <u>Terms and Conditions</u>

Solutions

Table 1 Selected peritoneal dialysis solutions currently available in Europe								
Solution (manufacturer)	pH	Chambers	Buffer	Osmotic agent	GDPs	Advantages	Disadvantages	
Dianeal* (Baxter*)	5.2	Single	Lactate	Glucose	High	Easy to manufacture; low cost	Low pH; poor peritoneal membrane biocompatibility; infusion pain; contains lactate	
Extraneal® (Baxter*)	5.6	Single	Lactate	Icodextrin	Low	Sustained ultrafiltration; reduced	Contains lactate; low pH; single	
						Glucose degradation	daily use only; hypersensitivity	
Nutrineal* (Baxter*)	5.5	Single	Lactate	Amino acids	No	products	Contains lactate; low pH; single daily use only	
						nutrition		
Physioneal® (Baxter*)	7.4	Double	Lactate/ bicarbonate	Glucose	Low	Improved biocompatibility; preserved membrane defense; reduced infusion pain	Local and systemic glucose exposure; reduced peritoneal lactate exposure	
Stay-safe® (Fresenius‡)	5.5	Demex	Lactate	Glucose	High	Ease of manufacture; low cost	Low pH; poor peritoneal membrane biocompatibility; infusion pain; contains lactate	
Balance® (Fresenius‡)	7.0	Double	Lactate	Glucose	Low	Improved biocompatibility; preserved membrane defense; reduced risk of peritonitis?	Higher but not neutral pH; local and systemic glucose exposure; contains lactate	
BicaVera® (Fresenius‡)	7.4	Double	Bicarbonate	Glucose	Low	Improved biocompatibility; preserved membrane defense; improved correction of acidosis	Local and systemic glucose exposure	
Gambrosol® Trio (Fresenius‡)	6.5	Triple	Lactate	Glucose	Low	Improved biocompatibility; preserved membrane defense	Higher but not neutral pH; local and systemic glucose exposure; contains lactate	

*Deerfield, IL, USA. #Bad Homburg, Germany. Abbreviation: GDPs, glucose degradation products.

Effects of Conventional Solutions

Effects of Conventional Solutions

Biocompatible Solutions

Effects of Biocompatible Solutions

PD Rx: Solution

Risk factors for loss of residual renal function in children treated with chronic peritoneal dialysis

Il-Soo Ha¹, Hui K. Yap², Reyner L. Munarriz³, Pedro H. Zambrano⁴, Joseph T. Flynn⁵, Ilmay Bilge⁶, Maria Szczepanska⁷, Wai-Ming Lai⁸, Zenaida L. Antonio⁹, Ashima Gulati¹⁰, Nakysa Hooman¹¹, Koen van Hoeck¹², Lina M.S. Higuita¹³, Enrico Verrina¹⁴, Günter Klaus¹⁵, Michel Fischbach¹⁶, Mohammed A. Riyami¹⁷, Emilja Sahpazova¹⁸, Anja Sander¹⁹, Bradley A. Warady²⁰ and Franz Schaefer²¹ for the International Pediatric Peritoneal Dialysis Network (IPPN) Registry²²

- Icodextrin associated with increased risk of developing oligoanuria HR 2.38 (1.33-4.2) and lower residual urine output (p=0.043)
- Biocompatible fluid associated with greater residual urine output (p=0.028)

PD Rx: Fill Volume

- Peritoneal membrane area is related to body size
- Use body surface area to calculate fill volume (as opposed to weight)
- Fill volume affects peritoneal membrane recruitment and diffusion capacity

PD Rx: Fill Volume

APD:

- Nocturnal fill volume:
 >2 years: 1000-1200 mL/m²
 < 2 years: 600-800 mL/m²
- Daytime Fill volume: 50% of nocturnal fill volume

CAPD:

- 600-800 mL/m² (day)
- 800-1000 mL/m² (night)

Measuring IPP

Intra-peritoneal pressure maximum 18 cm H_2O Normal 7-14 cm H_2O

- Empty bladder
- Patient placed completely flat
- Connection made to peritoneal system
- Any fluid in abdominal cavity is drained and defined volume of PD fluid is instilled
- PD line is fixed vertically
- Zero level of column (on graduated scale) is set at center of abdominal cavity, on the medial axillary line
- Connection of line to patient is opened
- Level of column of dialysis fluid in the PD line is read with a scale graduated in cm after height of column stabilizes

Fig. 1 The zero level of the column (on the graduated scale) is set at the centre of the abdominal cavity, i.e. medial axillary line

PD Rx: Excess Volume

Intra-peritoneal pressure maximum 18 cm H_2O Normal 7-14 cm H_2O

- Excess volume:
- -Loss of UF
- -Pain
- -Risk of hernia
- -Risk of hydrothorax
- -Risk of breathing problems

PD Rx: Dwell Time

Short exchanges

- Clearance of small solutes (urea)
- Better ultrafiltration

Long exchanges

- Clearance of higher molecular weight (creatinine and phosphate)
- Less ultrafiltration

Dwell time should be determined by individual peritoneal membrane transport status

PD Rx: # Exchanges

APD

- 5-10 exchanges overnight
- 9-12 hours
- Daytime dwell

CAPD

- 3-5 exchanges/day
- 4-5 hour dwell time, with longer overnight dwell

PD Rx cheat sheet

Automated PD

Solution:

1.5%, 2.5% or 4.25% dianeal *Fill volume (nocturnal):*

< 2years old = 600-800 mL/m²

> 2 years old = 1000-1200 mL/m²

Last fill (daytime):

1/2 the nocturnal fill volume #exchanges over #hours:

5-10 exchanges overnight over 9-12 hrs

Fill/Drain time: 15 minutes *Dwell time:* 40-60 minutes

CAPD

Solution:

1.5%, 2.5% or 4.25% dianeal

Fill volume (daytime):

600-800 mL/m²

Long overnight dwell(nocturnal):

 $800-1000 \text{ mL/m}^2$

exchanges:

3-5 exchanges/day with dwell time: 4 hours **AND**

1 nocturnal exchange with dwell time: ~9 hours

Peritoneal Equilibration Test (PET)

- Test of peritoneal membrane transport
- •4 hour dwell, 1,100 mL/m2 BSA, 2.5% Dextrose
- "Short" PET 2 hours

Start: 0 hours

2 hours

Fnd

Nephrol Dial Transplant (2010) 25: 2052-2062

PET: Transporter Type

Category of peritoneal transport	D/P urea ^a	D/P creatinine ^a	D/D0 glucose ^a
High	0.91-0.94	0.77–0.88	0.12-0.21
High average	0.82-0.90	0.64–0.76	0.22-0.32
Low average	0.74-0.81	0.51-0.63	0.33–0.42
Low	0.54-0.73	0.37-0.50	0.43-0.55

 $^{\rm a}{\rm At}$ a 4 h dwell of an exchange performed with 1,100 ml/m² BSA of a 2.5% dextrose solution

B A Warady, S R Alexander, S Hossli, E Vonesh, D Geary, S Watkins, I B Salusky and E C Kohaut JASN November 1996, 7 (11) 2385-2391;

PET: Transporter Type

Transporter Type	Characteristics	Prescription
High	 Highly permeable membrane Rapid solute clearance Loss of osmotic gradient quickly (poor UF) Higher protein loss (lower albumin) 	-Shorter dwell times -NIPD, or APD with icodextrin daytime fill
High Average	-Efficient membrane -Good solute clearance -Good UF	-Any dialysis regimen
Low Average	-Less efficient membrane -Slower solute cleranace -Good UF	-Any dialysis regimen, but with fewer cycles
Low	 -Low membrane permeability -Slow solute clearance -Very good UF -Lower protein loss (higher albumin) 	-Larger fill volumes -Longer duration of dwell with less cycles -CAPD or CCPD

PD Rx: Modeled Approach

Kinetic Modeling Software Based Programs

- •PD-Adequest 2.0 (Baxter)
 - Validated in children
- Patient Online (Fresenius)

PD Rx: Adjustment

Inadequate Clearance

Inadequate Ultrafiltration

- Introduce daytime dwell
- Increase fill volume
- Lengthen exchange time
- Increase number of exchanges
- Increase solution tonicity

- Increase solution tonicity
- Icodextrin
- Shorten exchange time

Delivered dose of dialysis is "adequate":

- •Optimal growth
- •Blood pressure control
- Optimal nutritional status
- Avoidance of hypovolemia and sodium depletion
- Adequate psychomotor development

Adequacy: Measures of Clearance

- •Solute Clearance Measures:
 - Weekly Kt/V_{urea}
 - Weekly Creatinine Clearance
- •Current guidelines and consensus statements favor use of Kt/V_{urea} as the 'standard' measure to follow

• "K" is representative of CLEARANCE of UREA

- -Kd = clearance of dialysis delivered-Kr = clearance of 'residual' renal function
- "t" is the time over which dialysis is delivered -In PD calculations, "t" is normally considered 24 hours/day (calculation is based on full day of dialysate/urine output, then scaled to 1 week)
- "V"_{urea} is the volume of distribution for Urea in the patient, which is the patient's TBW

Total Kt/V_{urea} = dialysis + renal clearance

Weekly Peritoneal Dialysis Kt/V

24 Hr D/P urea x 24-hr drained volume x 7

V

Weekly Renal Kt/V

mL/min Urea clearance x 1440 min/day x 7

1000 mL x V

Daily Renal Urea Clearance

Volume of 24-hr urine in mL x Urine Urea Nitrogen Conc.

1440 min/day x BUN Concentration

Total Body Water Calculation

Males: TBW = 0.010 • (height • weight)^{0.68} - 0.37 • weight Females: TBW = 0.14 • (height • weight)^{0.64} - 0.35 • weight

Table 17. Male Total Body Water (L) Nomograms

								TIGIG	in team)								
1	50	54	58	62	66	70	74	78	82	86	90	94	98	102	106	110	114
2	1.6	1.7	1.8	1.9	9.222	200000	20022	82823	0.000		1923	1.3.4		0000838	823333	332,933	
3	1.9	2.1	2.2	2.4	133333	33833	143333	33333	633333	838%	833333	333333	66536	123233	33333		
4	2.2	2.4	2.6	2.8	3.0	2022	000000	33333	000000	13.023	22322	2020.2	0.000	000000	0.000	800000	
5	2.4	2.7	2.9	3.1	3.3	232-233		20000	23333	10000	23323	2223	0000	2000		2000	
6	2.6	2.9	3.1	3.4	3.6	3.9	4.1	2000	S	2000			262.00		S. S	0.000	
7	2.8	3.1	3.4	3.6	3.9	4.2	4.4	4.7	4.9	10000	000000	C 2000	1000	0.00808	20000	000000	
8	2.9	3.2	3.5	3.9	4.1	4.4	4.7	5.0	5.3	5.5	5.8					S888	
9		20020	(3233)	4.0	4.4	4.7	5.0	5.3	5.6	5.9	6.2	6.5	6.7	0.000			
10	100035		23366	4.2	4.6	4.9	5.2	5.6	5.9	6.2	6.5	6.8	7.1	7.4	7.7		
11	20000	60055	1210000	4.4	4.8	5.1	5.5	5.8	6.2	6.5	6.8	7.1	7.5	7.8	8.1	8.4	8.7
12	131323		833986	4.5	4.9	5.3	5.7	6.0	6.4	6.8	7.1	7.5	7.8	8.1	8.5	8.8	9.1
13			23333	132.333	10025	0.0008	10000	6.3	6.6	7.0	7.4	7.8	8.1	8.5	8.8	9.2	9.5
14	22222		3.22	10000	20000	23223		6.5	6.9	7.3	7.7	8.0	8.4	8.8	9.2	9.5	9.9
15	535353	0.222.02	(3333)	8-2023	233648		Sec. 30	6.7	7.1	7.5	7.9	8.3	8.7	9.1	9.5	9.9	10.2
16		83335	2.33	828633	S3305		0.333	6.8	7.3	7.7	8.1	8.6	9.0	9.4	9.8	10.2	10.6
17	22222	22233	12000	000000	22222	1000	100000	5.5.X.S	155.85		8.4	8.8	9.2	9.7	10.1	10.5	10.9
18	22000	1000.55	100000	10000	00000	1.1.1.1		0.000		0.000	8.6	9.0	9.5	9.9	10.4	10.8	11.2
19	1999	100000	22233	1.22		2002		122.22	1222.23	22.55	8.8	9.3	9.7	10.2	10.6	11.1	11.5
20	000200	0.000	000000	000000	00000	100000	0.000	22.20		26.33	9.0	9.4	9.9	10.4	10.9	11.3	11.8

Uninht form

Table 17 (cont'd). Male Total Body Water (L) Nomograms

Height (cm)

114 118 122 125 130 134 138 142 146 150 154 158 162 166 170 174 178 182 186 190 110 11.8 12.3 12.7 13.2 13.6 14.0 14.5 14.9 15.3 15.7 11.3 11.9 12.412.8 13.3 13.8 14.3 14.7 15.2 15.7 15.1 16.5 13.4 123 12.9 13.9 14.4 14.9 15.4 15.9 16.4 15.8 17.3 17.8 18.3 18.7 128 13.3 13.9 14.4 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 13,8 14.4 14.9 16.0 17.1 182 18.7 132 15.5 16.6 17.7 193 19.8 20.321.3 23.8 14.2 16.0 10.6 17.1 17.Z 21.0 22.1 136 14.8 15.4 18.3 18.8 19.4 199 20.5 21.6 14.0 14.8 15.2 15.8 16.5 17.1 17.7 18.3 18.8 19.4 20:0 21.2 21.7 22.9 236 22.3 23.4 24.0 22,4 23.6 24.7 14.3 15.0 15.6 16.3 16.9 17.5 182 18.8 19.4 20.0 20.6 21.8 23.0 24.2 212 14.6 15.3 16.0 16.7 17.3 18.0 18.7 19.3 19.9 20.6 21.2 22.4 23.1 23.7 24.9 26.5 218 21.9 22.3 22.9 15.7 16.4 17.8 18.4 19.1 19.8 20.4 21.1 22.4 23.0 23.7 243 24.9 25.6 14.9 17.1 28.9 27.5 16.7 18.1 19.6 20.2 20.9 21.6 23.0 23.6 24.3 24.9 25.6 28.2 18.0 17.4 18.8 18.3 17.0 20.0 20.7 21.4 22.1 23.5 24.2 24.9 25.5 26.2 23.9 17.6 10.5 19.2 22.6 23.3 24.0 24.7 25.4 25.1 27.5 28.2 18.6 17.3 18.1 18.9 19.6 20.4 21.1 21.8 26.0 18.4 20.8 21.5 22.3 23.0 23.8 24.5 25.2 26.0 28.7 27.4 28.1 28.8 16.8 17.6 19.2 20.0 17.1 17.9 18.7 19.5 20.3 21.1 21.9 22.7 23.5 24.2 25.0 25.7 26.5 27.2 27.9 28.7 29.4 17.3 18.2 19.0 19.8 20.7 21.5 22.3 23.1 23.9 24.7 25.4 26.2 27.0 27.7 28.5 29.2 30.0 20.1 21.0 21.8 22.5 23.5 24.3 25.1 25.9 26.7 27.5 28.2 29.0 29.8 30.6 20.4 21.3 22.1 23.0 23.8 24.7 25.5 25.3 27.1 27.9 28.7 29.5 30.3 31.1 20.7 21.6 22.5 23.3 24.2 25.0 25.9 29.7 27.6 28.429.2 30.0 30.8 31.7

20.9

21.2

21A

21.7

21.8

221

22.4

22.6

22.8

23.1

23.3

23.6

23.7

24,0

24.3

24.5

24.5

25.1

25.4

25.5

25.9

26.1

ZE.3

26.5

24.5

24.9

25.2

25.5

25.8

26.1

26.4

26.6

26.9

27.2

27.4

27.6

25.4

25.8

26.1

28.4

28.8

27.1

27.A

27.7

27.9

28.2

28.5

28.7

26.3

26.7

27.0

27.4

27.7

26.0

28.4

28.7

29.0

29.3

29.5

29.8

27.1

27.5

27.9

29.3

28.6

29.0

29.3

29.7

30.0

33.3

33.6

33.9

28.0

28.4

28.8

29.2

29.6

30.0

30.3

30.7

31.0

31.3

31.6

31.9

28.8

29.3

29.7

30.1

30.5

30.9

31.3

31.6

32.0

3Z.3

32.7

33.0

29.7

30.1

33.6

31.0

31.4

31.8

32.2

32.6

33.0

33.3

33.7

34.1

30.5

31.0

31.5

31.9

32.3

32.8

33.2

33.6

34.0

34.4

34.7

35.1

31.4

31.8

32.8

33.2

33.7

34.1

34.5

34.9

35.3

35.7

35.1

323

32.2

32.7

33.2

33.7

34.1

34.6

35.1

35.5

35.9

36.3

36.7

26.1

26.6

27.6

28.2

28.6

29.5

30.1

30.7

31.3

31.9

32.4

33.0

33.5

34.0

34.5

35.0

35.6

36.0

35.4

35.9

37.3

37.7

35.2

26.6

27.4

28.1

28.8

29.5

30.2

30.8

31.5

32.1

32.7

33.2

33.8

34.4

34,9

35.4

35.9

26.4

36.9

37,4

37.8

38.3

38.7

39.2

28.8

29.6

30.2

30.5

31.5

32.2

32.8

33.4

34.0

34.6

35.2

35.7

36.3

35.8

37.3

37.8

35.5

33.8

39.3

39.7

43.2

Weight (kg)

106

10.9

11.4

11.8

12.2

12.6

13.0

13.3

13.8

13.9

14.2

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66 68

70

72

74

76

78

80

Table 18. Female Total Body Water (L) Nomograms

I DESCRIPTION OF A DESC

								Heig	nt (cm	1							
	50	54	58	62	66	70	74	78	82	86	90	94	98	102	106	110	114
2	2.0	2.1	2.2	2.4	12333	2000	12200	25000	100	10000	2000					8-14-5-1 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
3	2.4	2.6	2.8	2.9	123222	1999	0.000		9233	000000	9.5493	233333			100000		
4	2.8	3.0	3.2	3.4	3.6	3333	13333	133333	2000	33333	333333	S	33333	\$22.00	02222	100.000	22222
5	3.1	3.3	3.5	3.8	4.0	12.223		0.000		100000	22222						
6	3.3	3.6	3.8	4.1	4.3	4.6	4.8	86600	65050		10.000	10000		1.1.1.1	23.23	10000	1.257.00
7	3.5	3.8	4.1	4.4	4.8	4.9	5.2	5.5	5.7	22033						10000	
8	3.7	4.0	4.3	4.6	4.9	5.2	5.5	5.8	6.1	6.4	6.6						033330
9	Sec. 3.	10000	66583	4.9	5.2	5.5	5.8	6.1	6.4	6.7	7.0	7.3	7.6		100233		333383
10	120030		1.1.1.1	5.1	5.4	5.8	6.1	6.4	6.8	7.1	7.4	7.7	8.0	8.3	8.6	22.220	
11	22230	2.000	12222	5.3	5.6	6.0	6.4	6.7	7.1	7.4	7.7	8.1	8.4	8.7	9.0	9.3	9.6
12	83922			5.4	5.8	6.2	6.6	7.0	7.3	7.7	8.0	8.4	8.7	9.1	9.4	9.7	10.0
13	6.5.0		123333	20.02	10000	1.		7.2	7.6	8.0	8.3	8.7	9.1	9.4	9.8	10.1	10.4
14	23333		20000	2223	2888			7.4	7.8	8.2	8.6	9.0	9.4	9.7	10.1	10.5	10.8
15	89.93	3333	1. 2018.12	23333	1.200	13223	3300 A	7.6	8.0	8.5	8.9	9.3	9.7	10.0	10.4	10.8	11.2
16	33383	20032	000000	200033	3322	100000	122323	7.8	8.3	8.7	9.1	9.5	9.9	10.3	10.7	11.1	11.5
17			20000	222.23	19999		100835	10000	0.028	12223	9.3	9.8	10.2	10.6	11.0	11.4	11.8
18	57006		5.55 C.S.	1122	100000		1000		17.044		9.6	10.0	10.5	10.9	11.3	11.7	12.2
19	200323	32222	202223	32503	22,22	1000	100038C	10000	0.22	22.33	9.8	10.2	10.7	11.1	11.6	12.0	12.5
20		0.000	100000	200	10000	100.00		10000	1999	10.000	10.0	10.4	10.9	11.4	11.8	12.3	12.7

Table 18 (cont'd). Female Total Body Water (L) Nomograms

										He	hight (cn	1)										
	106	110	114	118	122	126	130	134	138	142	145	150	154	158	162	166	170	174	178	182	186	190
20	11.8	12.3	12.7	13.2	13.6	14,0	14.5	14.9	15.3	15.7	16.1	16.5				1.000	12.000		32	- Contract		
22	12.3	12.8	13.3	13.7	14.2	14.7	15.1	15.6	16.0	16.4	16.9	17.3	Same -	and the second	100.000	1000	Contraction of		A COLO	the state	Sec. But	200
24	12.8	13.3	13.8	14.3	14.8	15.2	15.7	16.2	16.7	17.1	17.6	18.0	18.5	18.9	19.4		1000	Contraction of the	State of State	10.000	A.C.	A.C.
26	13.2	13.7	14.2	14.8	15.3	15.8	16.3	16.8	17.3	17.8	18.3	18.7	19.2	19.7	20.1	1000		and the second		-	1000	10000
28	13.6	14.1	14.7	15.2	15.8	16.3	16.8	17.3	17.9	18.4	18.9	19.4	19.9	20.4	20.9	21.3	21.8	-	0000	111000	1.048.00	100.000
30	13.9	14.5	15.1	15.7	16.2	16.8	17.3	17.9	18.4	18.9	19.5	20.0	20.5	21.0	21.5	22.0	22.5	and the second		1. The second	1000	1000
32	14.3	14.9	15.5	16.1	16.6	17.2	17.8	18.4	18.9	19.5	20.0	20.6	21.1	21.7	22.2	22.7	23.2	23.7	24.3	1000	1.000	Que
34	14.6	15.2	15.8	16.4	17.0	17.7	18.2	18.8	19.4	20.0	20.6	21.1	21.7	22.3	22.8	23.4	23.9	24.4	25.0	A Designation of the		1000
36	14.8	15.5	16.2	16.8	17,A	18.1	18.7	19.3	19.9	20.5	21.1	21.7	22.3	22.8	23.4	24.0	24.5	25.1	25.6	26.2	26.7	100
38	15.1	15.8	16.5	17.1	17.8	18.4	19.1	19.7	20.3	21.0	21.8	22.2	22.8	23.4	24.0	24.6	25.1	25.7	26.3	26.9	27.4	E. T.
40	100 M	1-	16.8	17.4	18.1	18.8	19.5	20.1	20.7	21.4	22.0	22.7	23.3	23.9	24.5	25.1	25.7	26.3	26.9	27.5	28.1	28.6
42	the second	and the second second	17.0	17.7	18.4	19.1	19.8	20.5	21.1	21.8	22.5	23.1	23.8	24.4	25.0	25.7	26.3	26.9	27.5	28.1	28.7	29.3
44	Contract for	100	17.3	18.0	18.7	19.5	20.2	20.9	21.5	22.2	22.9	23.6	24.2	24.9	25.5	26.2	26.8	27.4	28.1	28.7	29.3	29.9
46	ALC: NOT	-	17.5	18.3	19.0	19.8	20.5	21.2	21.9	22.6	23.3	24.0	24.7	25.3	26.0	26.7	27.3	28.0	28.6	29.3	29.9	30.5
48	100000	100	17.8	18.5	19.3	20.0	20.8	21.5	22.3	23.0	23.7	24.4	25.1	25.8	26.5	27.2	27.8	28.5	29.2	29.8	30.5	31.1
50	Contraction of the	2000	18.0	18.8	19.6	20.3	21.1	21.8	22.6	23.3	24.1	24.8	25.5	26.2	26.9	27.6	28.3	29.0	29.7	30.4	31.0	31.7
52	Contract of the	1000	12.11			20.6	21.4	22.1	22.9	23.7	24.4	25.2	25.9	26.6	27.4	28.1	28.8	29.5	30.2	30.9	31.6	32.2
54	CACCLE.	200.00	1000	Town Carlo	1000	20.8	21.6	22.4	23.2	24.0	24.8	25.5	26.3	27.0	27.8	28.5	29.2	29.9	30.7	31.4	32.1	32.8
56	The Owner Party	1000		9200	Contraction of the	21.1	21.9	22.7	23.5	24.3	25.1	25.9	26.6	27.4	28.2	28.9	29.7	30.4	31.1	31.9	32.6	33.3
58	Columbia and	-	1000	Box.	Statement of	21.3	22.1	23.0	23.8	24.6	25.4	26.2	27.0	27.8	28.5	29.3	30.1	30.8	31.6	32.3	33.1	33.8
60	The local division in which the	2000	17-10-	- 25152	10000	21.5	22.4	23.2	24.1	24.9	25.7	26.5	27.3	28.1	28.9	29.7	30.5	31.3	32.0	32.8	33.5	34.3
62	Test and	A state of the	10003	N. Carlos	31.17%	21.7	22.6	23.4	24.3	25.2	26.0	26.8	27.7	28.5	29.3	30.1	30.9	31.7	32.4	33.2	34.0	34.8
64	States in	10000	15-22	2 march 1	25. 7	21.9	22.8	23.7	24.6	25.4	26.3	27.1	28.0	28.8	29.6	30.4	31.3	32.1	32.9	33.6	34.4	35.2
66	Concession of the	Section and	22.000	Stat State	Carlor C	State of	119 80	Allentat	24.8	25.7	26.5	27.4	28.3	29.1	30.0	30.8	31.6	32.4	33.2	34.1	34.9	35.7
68	1000	1000	1000	the state of	0122	1000	di setta da	2000	25.0	25.9	26.8	27.7	28.6	29.4	30.3	31.1	32.0	32.8	33.6	34.5	35.3	36.1
70	0014025	-	C. Contraction	24232	1.000	1000	1000	10000	25.2	26.1	27.0	27.9	28.8	29.7	30.6	31.5	32.3	33.2	34.0	34.9	35.7	36.5
72	Contraction of the	125	A sa and	0 2 2	1000	1	2220	1000	25.4	26.4	27.3	28.2	29.1	30.0	30.9	31.8	32.7	33.5	34.4	35.2	36.1	36.9
74	-D.3	Sec. Or	1 - 25	the second	100.000	10500	CALC D	1 Stanger	25.6	26.6	27.5	28.4	29.4	30.3	31.2	32.1	33.0	33.9	34.7	35.6	36.5	37.3
76	-	170	144055	the state of the	Contraction of	1000	Gerclarit.	10000	25.8	26.8	27.7	28.7	29.6	30.6	31.5	32.4	33.3	34.2	35.1	36.0	36.8	37.7
78	-	- 23-23	2-0.11		State State 2	10000	Contraction of the	1000	26.0	27.0	27.9	28.9	29.9	30.8	31.7	32.7	33.6	34.5	35.4	36.3	37.2	38.1
80	CHARLES	NOT THE	1	Constanting of	11110	Contraction of the	Contraction of the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.2	27.2	28.1	29.1	30.1	31.1	32.0	33.0	33.9	34.8	35.7	36.7	37.6	38.5

Weight (kg)

Weight (kg)

The minimal "delivered" dose of total (peritoneal and kidney) small-solute clearance should be a Kt/V_{urea} of at least 1.8/week

Residual Kidney Function

- Should be measured when UOP > 100 mL/day
- Defined as urine Kt/V_{urea} > 0.1/week
- If the patient has RKF and residual kidney clearance is being considered as part of the patient's total weekly solute clearance goal, a 24 hour urine collection for urine volume and solute clearance determinations should be obtained at a minimum of every 3 months

Residual Kidney Function

- May have a significant impact on patient outcome
- Efforts should be made to preserve RKF
 - Minimize nephrotoxic insults
 - Promptly treat UTIs
 - Diuretics to maximize salt and water excretion
 - Use of ACE/ARBs

Ultrafiltration Adequacy: Euvolemia

Causes of Fluid Overload

- Inappropriate solution selection
- Inappropriate prescription for membrane transport status
- Non-adherence to PD or diet
- Peritoneal membrane dysfunction
- Loss of residual renal function
- Poor blood glucose control

Management

- The pediatric patient's clinical status should be reviewed at least monthly, and delivery of prescribed solute clearance should render the patient free of signs and symptoms of uremia
- Measure Kt/V one month after starting dialysis, when clinically needed and *at least* every 6 months
- PD effluent UF should be reviewed every month

- PD prescription must be individualized and optimized, and continually re-assessed
- While recommended minimal "delivered" dose of solute clearance should be a Kt/V_{urea} 1.8/week, adequacy is also determined by clinical outcomes of the patient
 - BP control, fluid management, growth, nutrition, bone disease, development

Useful Resources

- Optimal Care of the Infant, Child and Adolescent on Dialysis: 2014 Update. *Am J Kidney Dis 2014; 64(1):128-142*
- Care of the Pediatric Patient on Chronic Dialysis. *Adv Chronic Kidney Dis 2017; 24(6): 388-397*
- Pediatric Dialysis, 2nd Edition. Warady, Schaefer, Alexander.
 - Chapter 11 Technical Aspects of Prescription of Peritoneal Dialysis in Children, p 169-203
- Handbook of Dialysis, 5th Edition. Daugirdas, Blake and Ing.
 - Chapter 25 Adequacy of Peritoneal Dialysis p464-482
 - Chapter 26 Volume Status and Fluid Overload in Peritoneal Dialysis p483-489
 - Chapter 37 Dialysis in Infants and Childrren p693-712
- KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for 2006 Updates. Hemodialysis Adequacy, Peritoneal Dialysis Adequacy and Vascular Access. *Am J Kidney Dis 2006; 28(suppl 1): S1*

Peritoneal Dialysis Simulator www.Openpediatrics.org Harvard University

Thank you!

PD Rx: Modality

Effect of PD

PD Rx: Dwell Time

Accelerated Peritoneal Examination APEX time indicates optimal dwell time for UF

Physiology of Blood Purification: Dialysis & Apheresis

Jordan M. Symons, MD University of Washington School of Medicine Seattle Children's Hospital

Outline

- Physical principles of mass transfer
- Hemodialysis and CRRT

 Properties of dialyzers
 Concepts that underlies the HD reserved.
 - Concepts that underlie the HD procedure
- Peritoneal Dialysis
 - Peritoneal membrane physiology
 - Concepts that underlie the PD procedure
- Apheresis basic principles of blood separation

Diffusion

Convection

Effect of Pore Size on Membrane Selectivity

Intermittent Hemodialysis (IHD)

- Blood perfuses extracorporeal circuit
- Dialysate passes on opposite side of membrane
 - High efficiency system
- Particle removal mostly by diffusion
- Fluid removal by ultrafiltration (hydrostatic pressure across dialyzer membrane)

Hollow Fiber Dialyzers

Dialysis/Hemofiltration Membranes

Capillary

Cross Section

Blood Side

Permeability Surface Area Product: K₀A

- K₀A is a property of the *dialyzer*
- Describes maximum ability of dialyzer to clear a given substance

 $K_0A = permeability (K_0) * surface area (A)$

Clearance (K_D)

- Clearance (K_D) describes ability of a dialyzer to remove a substance from the blood
- Changes with the dialysis prescription

$$\mathbf{K}_{\mathsf{D}} = fx \{ \mathbf{K}_{\mathsf{0}} \mathsf{A}, \mathbf{Q}_{\mathsf{B}}, \mathbf{Q}_{\mathsf{D}} \}$$

Blood Flow and K₀A: Effect on Clearance

Blood Flow and Molecular Weight: Effect on Clearance

Small Molecules

- Diffuse easily
- Higher Kd at given Qb, Qd

Larger Molecules

- Diffuse slowly
- Lower Kd at given Qb, Qd

Ultrafiltration (UF)

- Removal of water due to effects of pressure
- Solutes removed by convection at the same time
- UF capability of a dialyzer described by the UF coefficient (K_{uf}) – ml/h/mmHg

<u>Ultrafiltration</u>

- Hydrostatic pressure across membrane
- More water removal with ↑pressure, ↑K_{uf}

Continuous Renal Replacement Therapy (CRRT)

- Extracorporeal circuit similar to IHD
- Runs continuously
- Particle removal may be by diffusion, convection or a combination
- Fluid removal by ultrafiltration
- Clearance can be approximated by the total effluent rate

Convection

- Small and large molecules move equally
- Limit is cut-off size of membrane
- Significant solute loss over time in CRRT

Peritoneal Dialysis (PD)

- Sterile dialysate introduced into peritoneal cavity through a catheter
- Dialysate exchanged at intervals
- Particle removal by diffusion
- Fluid removal by ultrafiltration (osmotic gradient using dextrose)

HD and PD: Physiological Differences

<u>Hemodialysis</u>

- Artificial membrane
- Higher blood flow
- Continuous dialysate flow
- Can use hydrostatic pressures for UF

Peritoneal Dialysis

- Natural membrane
- Capillary blood flow in peritoneum
- "Stationary" dialysate in most forms of PD
- Different approach to UF is required

PD Transport: A Complex Scheme

The "Three Pore" Model of Peritoneal Transport

- Large pores (>20 nm diameter)
 - Few in number (<10%)
 - Can permit protein transport
- Small pores (4 6 nm diameter)
 Majority (90%)
 - Transport most small molecules
- Ultra-small pores (aquaporins)
 1–2%; account for nearly half of water flow

Peritoneal Transport: An Interaction of Three Separate Processes

- Diffusion
- Ultrafiltration
- Fluid absorption

Diffusion in PD: Key Factors

- Concentration gradient of solute (D/P)
- Mass transfer area coefficient (MTAC)
 Effective peritoneal surface area
 - Surface area + vascularity
 - Diffusive characteristics of membrane for solute in question (permeability)

Ultrafiltration in PD: Key Factors

- Osmotic gradient
- Reflection coefficient
 - i.e., how well the osmotic particle stays in the dialysate ("1" would be perfect)
- UF coefficient
- Hydrostatic and oncotic pressure gradients

Fluid Absorption in PD

- Direct lymphatic absorption of peritoneal fluid
- Tissue absorption of peritoneal fluid
- Limits ultrafiltration and mass transfer

 Higher levels of peritoneal absorption reduce net ultrafiltration

Schematic of Molecular Transport in PD

Apheresis

- "Apheresis": Greek, "To take away or separate"
- Blood perfuses extracorporeal circuit
- Blood components separated; selected component removed
- If large volume removed replacement is required
- Uses include therapeutic indications or for blood component harvest

Components of Whole Blood

Apheresis Methods

Filtration

 Blood separation across a membrane by *size*

Centrifugation

 Blood component separation by *density*

Effect of Pore Size In Dialysis

Small molecules pass;
Plasma proteins are restricted

<u>Membrane Apheresis</u> Employs

- Larger pores will
- allow proteins topass through
- Blood cells are restricted
- Membrane system can be used for plasmapheresis, not cytapheresis

Apheresis by Centrifugation

- Spinning centrifuge separates blood components by density
- Specific component may be selected for removal by choosing appropriate layer
- Permits plasmapheresis and cytapheresis

Apheresis by Centrifugation

Fraction Removed from Plasma by Plasma Volume Replaced

- IgG: only 45% intravascular
- 1.5 vol removes
 ~35% of total
 body IgG
- Re-equilibration within ~2 days
- Repeated session QOD often needed

Physiology of Blood Purification: Summary

- Basic concepts of *diffusion* and *convection* underlie all dialysis methods – HD: Diffusion + hydrostatic-pressure UF
 - CRRT: Diffusion and/or convection + hydrostatic-pressure UF

- PD: Diffusion + osmotic-pressure UF

 Blood components separated by centrifugation or membrane in **apheresis**