Physiology of Blood Purification: Dialysis & Apheresis

Jordan M. Symons, MD University of Washington School of Medicine Seattle Children's Hospital

jordan.symons@seattlechildrens.org

Outline

- Physical principles of mass transfer
- Hemodialysis and CRRT
 - Properties of dialyzers
 - Concepts that underlie the HD procedure
- Peritoneal Dialysis
 - Peritoneal membrane physiology
 - Concepts that underlie the PD procedure
- Apheresis basic principles of blood separation

Diffusion

Convection

Effect of Pore Size on Membrane Selectivity

Intermittent Hemodialysis (IHD)

- Blood perfuses extracorporeal circuit
- Dialysate passes on opposite side of membrane
 - High efficiency system
- Particle removal mostly by diffusion
- Fluid removal by ultrafiltration (hydrostatic pressure across dialyzer membrane)

Hollow Fiber Dialyzers

Dialysis/Hemofiltration Membranes

Capillary

Cross Section

Blood Side

Permeability Surface Area Product: K₀A

- K₀A is a property of the *dialyzer*
- Describes maximum ability of dialyzer to clear a given substance

 $K_0A = permeability (K_0) * surface area (A)$

Clearance (K_D)

- Clearance (K_D) describes ability of a dialyzer to remove a substance from the blood
- Changes with the dialysis prescription

$$\mathbf{K}_{\mathsf{D}} = fx \{ \mathbf{K}_{\mathsf{0}} \mathsf{A}, \mathbf{Q}_{\mathsf{B}}, \mathbf{Q}_{\mathsf{D}} \}$$

Blood Flow and K₀A: Effect on Clearance

Blood Flow and Molecular Weight: Effect on Clearance

Small Molecules

- Diffuse easily
- Higher Kd at given Qb, Qd

Larger Molecules

- Diffuse slowly
- Lower Kd at given Qb, Qd

Ultrafiltration (UF)

- Removal of water due to effects of pressure
- Solutes removed by convection at the same time
- UF capability of a dialyzer described by the UF coefficient (K_{uf}) – ml/h/mmHg

<u>Ultrafiltration</u>

- Hydrostatic pressure across membrane
- More water removal with ↑pressure, ↑K_{uf}

Continuous Renal Replacement Therapy (CRRT)

- Extracorporeal circuit similar to IHD
- Runs continuously
- Particle removal may be by diffusion, convection or a combination
- Fluid removal by ultrafiltration
- Clearance can be approximated by the total effluent rate

Continuous Renal Replacement Therapy (CRRT)

- Extracorporeal circuit similar to IHD
- Runs continuously
- Particle removal may be by diffusion, convection or a combination
- Fluid removal by ultrafiltration
- Clearance can be approximated by the total effluent rate

Convection

- Small and large molecules move equally
- Limit is cut-off size of membrane
- Significant solute loss over time in CRRT

Peritoneal Dialysis (PD)

- Sterile dialysate introduced into peritoneal cavity through a catheter
- Dialysate exchanged at intervals
- Particle removal by diffusion
- Fluid removal by ultrafiltration (osmotic gradient using dextrose)

HD and PD: Physiological Differences

<u>Hemodialysis</u>

- Artificial membrane
- Higher blood flow
- Continuous dialysate flow
- Can use hydrostatic pressures for UF

Peritoneal Dialysis

- Natural membrane
- Capillary blood flow
 in peritoneum
- "Stationary" dialysate in most forms of PD
- Different approach to UF is required

PD Transport: A Complex Scheme

The "Three Pore" Model of Peritoneal Transport

- Large pores (>20 nm diameter)
 - Few in number (<10%)
 - Can permit protein transport
- Small pores (4 6 nm diameter)
 Majority (90%)
 - Transport most small molecules
- Ultra-small pores (aquaporins)

- 1-2%; account for nearly half of water flow

Peritoneal Transport: An Interaction of Three Separate Processes

- Diffusion
- Ultrafiltration
- Fluid absorption

Diffusion in PD: Key Factors

- Concentration gradient of solute (D/P)
- Mass transfer area coefficient (MTAC)
 Effective peritoneal surface area
 - Surface area + vascularity
 - Diffusive characteristics of membrane for solute in question (permeability)

Ultrafiltration in PD: Key Factors

- Osmotic gradient
- Reflection coefficient
 - i.e., how well the osmotic particle stays in the dialysate ("1" would be perfect)
- UF coefficient
- Hydrostatic and oncotic pressure gradients

Fluid Absorption in PD

- Direct lymphatic absorption of peritoneal fluid
- Tissue absorption of peritoneal fluid
- Limits ultrafiltration and mass transfer

 Higher levels of peritoneal absorption reduce net ultrafiltration

Schematic of Molecular Transport in PD

Apheresis

- "Apheresis": Greek, "To take away or separate"
- Blood perfuses extracorporeal circuit
- Blood components separated; selected component removed
- If large volume removed replacement is required
- Uses include therapeutic indications or for blood component harvest

Components of Whole Blood

Apheresis Methods

Filtration

 Blood separation across a membrane by *size*

Centrifugation

 Blood component separation by *density*

Effect of Pore Size In Dialysis

Small molecules pass;
Plasma proteins are restricted

<u>Membrane Apheresis</u> Employs

- Larger pores will
- allow proteins to
 pass through
- Blood cells are restricted
- Membrane system can be used for plasmapheresis, not cytapheresis

Apheresis by Centrifugation

- Spinning centrifuge separates blood components by density
- Specific component may be selected for removal by choosing appropriate layer
- Permits plasmapheresis and cytapheresis

Apheresis by Centrifugation

Fraction Removed from Plasma by Plasma Volume Replaced

- IgG: only 45% intravascular
- 1.5 vol removes
 ~35% of total
 body IgG
- Re-equilibration within ~2 days
- Repeated session QOD often needed

Physiology of Blood Purification: Summary

- Basic concepts of *diffusion* and *convection* underlie all dialysis methods – HD: Diffusion + hydrostatic-pressure UF
 - CRRT: Diffusion and/or convection + hydrostatic-pressure UF

- PD: Diffusion + osmotic-pressure UF

 Blood components separated by centrifugation or membrane in **apheresis**

Physiology of Blood Purification

jordan.symons@seattlechildrens.org