Hemodialysis Prescription & Adequacy Monitoring

Annual Dialysis Conference
Kansas City, Missouri
Feb 8th, 2020

Dr. Cherry Mammen
Pediatric Nephrologist (British Columbia Children’s Hospital)
Director of Dialysis (British Columbia Children’s Hospital)
Clinical Assistant Professor (University of British Columbia)
Objectives

• To review the distribution of urea during and after a dialysis treatment

• To discuss various methods of quantifying urea clearance during hemodialysis

• To provide equations to establish and refine the initial hemodialysis prescription

• To provide examples of maintenance hemodialysis adequacy assessments including nutritional monitoring
Why Is HD Adequacy Measurement Important?

• We are responsible for the dose of dialysis prescribed

• Less than adequate dialysis associated with poor outcomes
 – National Cooperative Dialysis Study (NCDS)
 • Lowrie EG et al, NEJM (1981)

• Your program may be expected to assess adequacy regularly (QI) and reimbursement may be based on your performance
Urea as a marker of small solute clearance

• Most abundant of organic solutes accumulating in renal failure
• Easily measured at a low cost
• Easily removed by the dialyzer
 – 60Da (small), water soluble, & uncharged
• Urea distribution volume = total body water
 – Estimated at 55-60% of body weight
 – Anthropometric equations (Mellits-Cheek)
BUN Levels & HD Adequacy

- **Monday**
- **Wednesday**

- **Pre HD**
- **Post HD**
- **Dialysis**
- **Urea Generation (G)**
Hemodialysis Adequacy: Urea Clearance Measurements

- Urea Reduction Ratio (URR)
- Single pool Kt/V (spKt/V)
 - Formal Urea Kinetic Modeling (UKM)
 - Estimated from Daugirdas II equation
- Equilibrated or double-pool Kt/V (eKt/V)
- Standard Kt/V (stdKt/V)
Hemodialysis Adequacy: Urea Reduction Ratio (URR)

\[(C_0 - C_1)/C_0 \times 100\%
\]

- \(C_0\) = pre-dialysis urea (mg/dL or mmol/L)
- \(C_1\) = post-dialysis urea (mg/dL or mmol/L)

- Extremely simple to use

- Imprecise as URR does not take 2 factors into account:
 - urea clearance corrected for ultrafiltration & volume contraction
 - urea generated during dialysis

- KDOQI guidelines: Target URR of 70% (minimum 65%)
What is Kt/V?
What is Kt/V?

• Fractional urea clearance for single HD session
 \[K \text{ (dialyzer urea clearance) } \times t \text{ (time)} \]
 \[V \text{ (urea volume of distribution)} \]

• Kt/V has no units
 \[K \times t = \text{L/hr x hr} = \text{L} \]
 \[V = \text{L} \]
 \[\frac{(K \times t)}{V} = \text{L/L} = \text{dimensionless ratio} \]

• What does a Kt/V of 1.0 mean?
 – Implies K \times t, or the total volume of blood cleared of urea during the HD session, is equal to V
$Kt/V \sim -\ln \left(1 - URR \right)$

$Kt/V \sim -\ln \left(\frac{C_1}{C_0} \right)$

$C_1 =$ post HD urea

$C_0 =$ pre HD urea
Urea Distribution: What does single pool mean?

- Assumes urea is distributed evenly across patient total body water.
- Urea removed at equivalent rates from all compartments of patient total body water:
 - Intracellular fluid
 - Extracellular fluid
 - Interstitial space
 - Intravascular space

Figure 1
Urea Kinetic Modelling (UKM) Fundamentals

- UKM uses advanced computational software to solve for two factors using equation with pre and post urea, dialysis time, interdialytic interval, dialyzer clearance (K_d), & residual function (K_r)
 - $V =$ end-dialysis urea distribution volume
 - $G =$ interdialytic urea generation rate

- spKt/V is calculated from K_d (dialyzer urea clearance), t (time of dialysis in minutes) and “modeled” V
UKM Fundamentals

• A computational algorithm solves for V and G by “reiteration” over several HD sessions using pre & post BUN
 — Both values are initially unknown

• V initially estimated with a formula based on height and post-dialysis weight
 — G is then calculated with the UKM equation
 — V is then calculated using the new G value

• Practically not used by most centers for monthly adequacy
Natural Logarithmic spKt/V Estimation
Daugirdas II formula

• The natural logarithm formula of Daugirdas:
 – has been validated\(^1\) in children
 – has gained acceptance\(^1,2,3\) as an accurate estimation of single-pool Kt/V in adults and children
 – is accurate by accounting for intradialytic urea generation and ultrafiltration
 – gives no information regarding nPCR

3. CMS-TEP, NQF
spKt/V: Daugirdas’ Approximation Formula

\[Kt/V = -\ln \left(\frac{C1}{C0} - 0.008t \right) + (4 - 3.5 \times \frac{C1}{C0}) \times \frac{UF}{W} \]

- **C0** = pre dialysis BUN (mmol/L or mg/dL)
- **C1** = post dialysis BUN (mmol/L or mg/dL)
- **t** = time on dialysis (hours)
- **UF** = ultrafiltration volume (liters)
- **W** = post dialysis weight (kg)

KDOQI Target: spKt/V 1.4 per HD session for pts treated thrice weekly, with a minimum delivered spKt/V of 1.2

Natural Logarithmic Estimates of Kt/V in the Pediatric Hemodialysis Population

Stuart L. Goldstein, MD, Jonathan M. Sorof, MD, and Eileen D. Brewer, MD

American Journal of Kidney Diseases, Vol 33, No 3 (March), 1999: pp 518-522
Double Pool Kinetics & eKt/V

eKt/V generally 0.2 units less than spKt/V

Figure 4: Diagram of fluid compartments (ICF and ECF).

Figure 3: Graph showing Urea Rebound over time.

Hemo Int Depner 2005: spKt/V predicted urea concentration (-) and measured urea concentration (.) during and after dialysis.
Urea rebound mostly related to the efficiency or rate of dialysis (K/V ratio)

% urea rebound (pediatrics)
Mammen\(^1\) et al 2011 (22.5 +/- 10.7%, n=30)
Goldstein\(^2\) et al 2000 (25 +/- 7.5%, n=16)
Marsenic\(^3\) et al 1999 (18 +/- 8%, n=15)

1. NDT 2010 2010;25:3044-3050
Equilibrated Kt/V Estimation Methods

- Rate equation (Daugirdas)\(^1\)
 - \(eqKt/V = spKt/V(1-0.6/t_{\text{hours}}) + 0.03\) (arterial access)
 - \(eqKt/V = spKt/V(1-0.4/t_{\text{hours}}) + 0.02\) (venous access)
- Mid-Dialysis Method (Smye)\(^2\)
- *Log Extrapolation of 15 min post-HD BUN (Goldstein)\(^3\)*
- Linear regression model (Marsenic)\(^4\)
 - \(Ceq \text{ (mmol/L)} = 1.085 Ct + 0.729\)

Utilizing 30 sec & 15 min BUN (Goldstein)

\[\text{eqBUN} = \text{BUN}_{30\text{sec}} + \frac{\left(\text{BUN}_{15\text{min}} - \text{BUN}_{30\text{sec}}\right)}{0.69} \]
Equilibrated Kt/V Estimation Methods: Pediatric Study

<table>
<thead>
<tr>
<th>Method</th>
<th>Total % error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daugirdas (Rate equation)</td>
<td>11.3% to 25.6%¹,²</td>
</tr>
<tr>
<td>Smye (Mid-Dialysis)</td>
<td>46%¹</td>
</tr>
<tr>
<td>Goldstein (Log extrapolation)</td>
<td>8%²</td>
</tr>
<tr>
<td>Marsenic (Linear Regression)</td>
<td>26.5%³</td>
</tr>
</tbody>
</table>

Frequent HD Dose Calculation

• How do we compare HD adequacy from 3x weekly hemodialysis to more frequent hemodialysis (eg: 4x/week)?

• Simple algebra is not accurate
 – More frequent HD = more efficient dialysis
 – To compare, you need to convert to a continuous equivalent of dialyzer clearance

• **Standard Kt/V (stdKt/V) is the answer!**
Standard Kt/V

• **Rationale**: Therapies that achieve the same mean pre-treatment BUN concentrations are equivalent in delivered dose and should produce similar patient outcomes
• Defined as a **weekly** urea clearance
• Can be used to compare any dialysis modality, frequency, and duration
• **KDOQI 2015 update (adults)**: Target stdKt/V of 2.3 with a minimum of 2.1
stdKt/V calculation

\[
\text{stdKt/V} = 168 \times \frac{(1 - \exp[-Kt/V])}{t}/\left[\frac{(1 - \exp[-Kt/V])}{(Kt/V) + 168/(N \times t) - 1}\right],
\]

\(t\) = treatment time in hours

Kt/V in stdKt/V calculation is eKt/V

N = number of treatments/week

• 398 HD sessions representing 30 patients (age 9.2-25 yrs)
 – ROC Curve Analysis using paired spKt/V and stdKt/V values

• **stdKt/V > 2.0** was best (93.5% sensitivity & 96.7 % specificity) to predict spKt/V ≥ 1.2

• **stdKt/V ≥ 2.2** was best (73.4% sensitivity & 96.1 % specificity) to predict spKt/V ≥ 1.4
Urea as a marker of nutrition

• Your chronic HD patient has a low pre-HD “BUN”
 • Patient could be adequately nourished with good clearance or
 Patient could be inadequately nourished

• Urea generation (G) correlates with protein catabolism, which reflects protein intake

• nPCR is the “normalized protein catabolic rate” used to estimate interdialytic protein intake in g/kg/day
 • Calculated by UKM or algebraic methods

Borah MF Kidney Int 1978
Cottini EP J Nutr 1973
Variables needed for nPCR calculation

\[\text{BUN} \]

\[\text{Dialysis} \]

\[(C1, V1) \]

\[(C2, V2) \]

\[\text{Wednesday} \]

\[\text{Friday} \]

\[C1 = \text{post HD urea} \]

\[C2 = \text{pre HD urea} \]

\[V1 = \text{post HD V} \]

\[V2 = \text{pre HD V} \]

\[t = \text{time between HD in min} \]
nPCR Estimation for Children

• Urea generation rate (estG, mg/min) calculated from the BUN rise between HD treatments

\[
estG = \frac{[(C2 \times V2) - (C1\times V1)]}{t}
\]

• \(nPCR_{est}\) (grams/kg/day) calculated using the modified Borah equation:

\[
nPCR_{est} = 5.42 \times \frac{estG}{V1} + 0.17
\]

Concerns of nPCR estimation in children

• Varying sizes, growth rates, and metabolic needs
 – No known nPCR targets in pediatrics
 – Trending is more IMPT than absolute values
• An absolute steady state is needed
 – Cannot be in anabolic (underestimates nPCR) or catabolic (overestimates nPCR) state
• Effect of other sources of nitrogen loss
 – Residual urine output
Table 1. Nutrition and hemodialysis adequacy parameters before and during intradialytic parenteral nutrition (IDPN) (BMI body mass index, nPCR normalized protein catabolic rate)a

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre IDPN</th>
<th>IDPN</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Weight change</td>
<td>-0.6±2.70</td>
<td>1.8±2.1</td>
<td><0.02</td>
</tr>
<tr>
<td>% BMI change</td>
<td>-1.3±2.7</td>
<td>1.3±2.1</td>
<td><0.02</td>
</tr>
<tr>
<td>nPCR (g/kg per day)</td>
<td>1.05±0.36</td>
<td>1.35±0.37</td>
<td><0.05</td>
</tr>
<tr>
<td>Serum albumin (g/dl)</td>
<td>3.7±0.8</td>
<td>3.8±0.6</td>
<td>NS</td>
</tr>
<tr>
<td>spKt/V</td>
<td>1.49±0.29</td>
<td>1.43±0.18</td>
<td>NS</td>
</tr>
</tbody>
</table>

a All values mean monthly±SD
Weight loss: 2% monthly weight loss for 3 consecutive months
Clinical Case:
Initial Hemodialysis Prescription:

• Aim to prescribe a dose of dialysis for desired quantity of urea removal.

• Urea removal occurs by 1st order (logarithmic) kinetics.

• Initial patient V_d of urea (total body water) is unknown.
Initial Hemodialysis Prescription & Refinement: Iterative Process

\[\text{Kt/V} \sim -\ln \left(\frac{C_1}{C_0} \right) \]

1. Determine desired urea removal (e.g. 50%)
2. Choose appropriate dialyzer and enter K
3. Estimate V (600 ml/kg) using initial pre-weight
4. Obtain pre dialysis [BUN] \(C_0 \), perform dialysis for prescribed t, obtain post dialysis [BUN] \(C_1 \)
5. Calculate V using K, t, and measured \(C_0 \) & \(C_1 \)
6. Repeat steps 1-5 using calculated V
13 year-old female with FSGS to initiate hemodialysis. Desired urea reduction ratio is 50%. Pre BUN 94 mg/dL. A dialyzer with surface area 1.3m² is chosen. ($K_{\text{urea}} = 210 \text{ ml/min} @ Q_b \text{ of } 250 \text{ ml/min}$)

Patient pre-dialysis weight is 42 kg.

Using equation: $Kt/V \sim -\ln (C_1/C_0)$

$210 \text{ ml/min} \times \frac{t}{(42 \text{ kg} \times 600 \text{ ml/kg})} = -\ln(0.5)$

leading to $t = 83$ minutes
Initial Hemodialysis Prescription & Refinement: Example

Hemodialysis performed.
Pre-HD [BUN] C0 = 94 mg/dL
Post -HD [BUN] C1 = 65 mg/dL
Time delivered = 83 minutes, URR 30%

Using equation: $\frac{Kt}{V} = -\ln \left(\frac{C1}{C0} \right)$

$210\text{ml/min} \times 83\text{min/V} = -\ln \left(\frac{65}{94} \right)$

leading to $V = 47.2$ liters
(Previous $V = 25.2$ litres)

Plug in new V and start process again
Clinical Cases: Moving from Initiation to Maintenance

- Initiation equation does not account for ultrafiltration—more precise equations like spKt/V or stdKt/V needed
- Target weight usually determined within one month after hemodialysis initiation
- Vascular access often changes
- Hemodialysis adequacy should be measured monthly including nPCR
Maintenance HD Scenario #1: Real Weight Gain

- Patient with increasing weight, adequate nutrition (nPCR) and decreasing spKt/V
- Recommend increase of dialyzer size or time of treatment

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>SpKt/V</th>
<th>nPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.3</td>
<td>1.40</td>
<td>1.20</td>
</tr>
<tr>
<td>35.2</td>
<td>1.32</td>
<td>1.15</td>
</tr>
<tr>
<td>36.1</td>
<td>1.21</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Maintenance HD Scenario #2
Fluid Weight Gain

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>SpKt/V</th>
<th>nPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.3</td>
<td>1.40</td>
<td>1.20</td>
</tr>
<tr>
<td>35.2</td>
<td>1.32</td>
<td>0.89</td>
</tr>
<tr>
<td>36.1</td>
<td>1.21</td>
<td>0.65</td>
</tr>
</tbody>
</table>

- Patient with increasing weight, decreasing spKt/V and worsening nPCR
- Check for edema, hypertension, albumin level
- Recommend decreasing target weight, addressing nutrition
Maintenance HD Scenario #3
Catabolic State

- Patient with decreasing weight, stable Kt/V and rising nPCR
- Severe malnutrition
- Recommend aggressive nutrition management

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>SpKt/V</th>
<th>nPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.3</td>
<td>1.40</td>
<td>1.20</td>
</tr>
<tr>
<td>32.5</td>
<td>1.32</td>
<td>1.65</td>
</tr>
<tr>
<td>31.6</td>
<td>1.35</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Conclusions

• HD adequacy measurements are an essential component of hemodialysis care delivery
• Understanding hemodialysis & nutrition adequacy can improve patient care
• HD adequacy calculations are not that complex
• Adequacy of dialysis is **not** equivalent to adequacy of patient care
 – Anemia, phosphate, blood pressure, fluid/Na intake, quality of life, growth, sleep, school attendance, etc...........
Thank You

• Email me for Excel spreadsheet calculators

• mammenchenry@gmail.com
Urea Clearance During Hemodialysis:
Single-Pool Model

G → V → K*C

Urea Generation Patient Compartment Urea Removal
Urea kinetics (single pool)

- Constant fractional removal leads to curvilinear decline (solid line).
- When urea is expressed as a logarithm, decline becomes linear (dotted line) with a slope that is equal to \(-\frac{K}{V}\) (efficiency).

*Figure 2: Urea concentration decline during dialysis expressed in standard units (C) and as a logarithm (\(\ln(C)\)).
Urea Mass Transfer During Hemodialysis

Harmon W, Jabs K: Hemodialysis (chap 77) in Pediatric Nephrology, 4th ed
Barratt, Avner, Harmon (ed) Lippincott, 1999
Initial Hemodialysis Prescription: Equation

\[Kt/V \sim -\ln \left(\frac{C_1}{C_0} \right) \]

- **K** = dialyzer urea clearance (ml/min)
- **t** = treatment time (minutes)
- **V** = estimated total body water (600 ml/kg)
- **C_0** = pre dialysis BUN (mmol/L or mg/dL)
- **C_1** = post dialysis BUN (mmol/L or mg/dL)
Two-point normalized protein catabolic rate overestimates nPCR in pediatric hemodialysis patients

Poyyapakkam R. Srivaths • Scott Sutherland • Steven Alexander • Stuart L. Goldstein

Table 2 Comparison of BUN and nPCR in pediatric hemodialysis patients

<table>
<thead>
<tr>
<th>BUN normalized</th>
<th>Total patient sample cohort (n=76)</th>
<th>Percent of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>nPCR < 1</td>
<td>68</td>
<td>89.5%</td>
</tr>
<tr>
<td>nPCR ≥ 1</td>
<td>7</td>
<td>9.2%</td>
</tr>
</tbody>
</table>

Table 3 Difference between two-point and three-point nPCR results

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Total patient sample cohort (n=76)</th>
<th>Percent of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two-point model incorrectly categorizes nPCR as >1</td>
<td>7</td>
<td>9.2%</td>
</tr>
<tr>
<td>Two-point model incorrectly categorizes nPCR as ≤1</td>
<td>1</td>
<td>1.3%</td>
</tr>
<tr>
<td>Two-point and three-point nPCR calculations agree</td>
<td>68</td>
<td>89.5%</td>
</tr>
</tbody>
</table>
Normalized Protein Catabolic Rate Versus Serum Albumin as a Nutrition Status Marker in Pediatric Patients Receiving Hemodialysis

Marisa Juarez-Congelosi, RD, LD,* Pamela Orellana, RD, LD,* and Stuart L. Goldstein, MD†

Table 1. Adequacy, Normalized Protein Catabolic Rate, and Serum Albumin by Age Group

<table>
<thead>
<tr>
<th></th>
<th>INF</th>
<th>CH</th>
<th>AD</th>
<th>All</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>nPCR</td>
<td>1.63 ± 0.73</td>
<td>1.29 ± 0.33</td>
<td>1.13 ± 0.28</td>
<td>1.20 ± 0.34</td>
<td><.0001</td>
</tr>
<tr>
<td>sAlb</td>
<td>4.4 ± 0.4</td>
<td>4.1 ± 0.5</td>
<td>4.2 ± 0.4</td>
<td>4.2 ± 0.5</td>
<td><.01</td>
</tr>
<tr>
<td>spKt/V</td>
<td>1.94 ± 0.42</td>
<td>1.53 ± 0.22</td>
<td>1.43 ± 0.15</td>
<td>1.48 ± 0.21</td>
<td><.0001</td>
</tr>
<tr>
<td>eqKt/V</td>
<td>1.74 ± 0.38</td>
<td>1.33 ± 0.33</td>
<td>1.24 ± 0.17</td>
<td>1.27 ± 0.19</td>
<td><.001</td>
</tr>
</tbody>
</table>

nPCR, normalized protein catabolic rate; sAlb, serum albumin; spKt/V, single-pool Kt/V; eqKt/V, estimated equilibrated Kt/V; INF, infant; CH, child; AD, adolescent.

*Analysis of variance comparing mean values (± standard deviation) across age strata.
National Cooperative Dialysis Study (NCDS)

- NIH-sponsored multicenter study (1981) of outcomes related to randomized HD doses
- 4 different 3x/week prescriptions in 151 pts based on time averaged BUN & time
 - TAC_{urea} 31.5 mmol & 17.5 mmol/L in both groups
 - Duration 4.5 hrs & 3.25 hrs
- Protein intake not randomized but meant to be 0.8-1.4 g/kg/day
- High BUN groups were hospitalized and withdrawn from study at much higher rates

BUN Levels & Nutrition Adequacy

- Dialysis
- Protein intake (nPCR)

Pre HD
Post HD
NCDS (1985)

- Reanalysis by Gotch & Sargent (1985) separated out variables according to spKt/V
- Poor outcomes more often seen in those with spKt/V <1.0
HEMO Study (2002)

- 1846 adult pts randomized to high or low flux HD and standard or high dose 3x/week HD
- Dose targets: eKt/V calculated from spKt/V
 - Standard dose: 1.05
 - High dose: 1.45
- Achieved mean eKt/V in both groups:
 - 1.16 (standard) & 1.53 (high dose)
 - No difference in morbidity & mortality from any cause
HEMO Study (2002)

• Provides strong evidence that the minimum 3x/week HD dose suggested by KDOQI is also the optimal dose
• No benefit in increasing dose further
• Providers have reached a limit with 3x/week HD
 – Higher std Kt/V achieved with more frequent HD
• No randomized studies in children!!!!

Eknoyan G N Eng J Med 2002
Relationship of spKt/V & eKt/V

Figure 6

Sem Dia Depner 2001: Relationship of eKt/V to fixed spKt/V varying time.