SALT AND WATER MANAGEMENT: A CRITICAL CONSIDERATION IN HD AND PD PRESCRIPTIONS

OPTIMAL DIALYSIS – IN SEARCH OF THE HOLY GRAIL
PART 1: VOLUME AND BP MANAGEMENT

MICHAEL A KRAUS, MD FACP
EMERITUS PROFESSOR OF CLINICAL MEDICINE – INDIANA UNIVERSITY
ASSOCIATE CHIEF MEDICAL OFFICER – FRESENIUS KIDNEY CARE
CONFLICT OF INTEREST

• ASSOCIATE CMO OF FRESENIUS KIDNEY CARE
OPTIMAL DIALYSIS – THE HOLY GRAIL – PART 1

DEFINE THE TRUE TOXIN

UREA – KT/V: IMPROVE CARE WITH INCREASED UREA CLEARANCE AND REMOVAL OF MYSTERY TOXINS

VERSUS

SALT AND WATER: IMPROVE CARE THROUGH VOLUME, BLOOD PRESSURE AND CARDIOVASCULAR CARE

YOU MUST CHOOSE

BUT CHOOSE WISELY
I CHOSE VOLUME

Put the patient first

The problem is salt and water

Can we improve volume BP control at home?
CURRENT CHALLENGES FOR DIALYSIS MODALITIES: CARDIOVASCULAR DISEASE AND THERAPY TOLERANCE

- The hallmark of morbidity and mortality of dialysis populations is cardiovascular disease and substantial patient fatigue.

- PD and HHD can be used to address efficacy of managing CVD and patient choice of dialysis therapy over time.

- But conventional HD and PD longer term face complications from persistent volume overload, uncontrolled hypertension, with resultant LVH, heart failure & arrhythmias.
THE PROBLEM: DIALYSIS IS ASSOCIATED WITH PRESSURE, VOLUME, AND CV-RELATED MORBIDITY

Approximately 4 in 5 dialysis patients have diagnoses of diabetes, heart failure, or cardiac arrhythmia.

Any 1 of 3 conditions: 1.7–2.0 times higher risk of CV death

Any 2 of 3 conditions: 2.5–3.6 times higher risk of CV death

All 3 conditions: 5.0 times higher risk

PREVALENCE & HAZARD RATIO

21%
HR = 1.0

27%
HR = 1.7

14%
HR = 3.2

16%
HR = 5.0

7%
HR = 2.5

5%
HR = 2.0

5%
HR = 3.6

4%
HR = 1.9

14% HEART FAILURE

5% DIABETES

7% CARDIAC ARRHYTHMIA

SPECIAL DATA ANALYSES: 2016 USRDS ESRD DATABASE AND MEDICARE CLAIMS DATA.
ASSOCIATED MORTALITY: UFR VS. INTERDIALYTIC FLUID LOAD

High UFR is not good, but persistent fluid overload is worse!

Intradialytic UFR and Mortality Risk

<table>
<thead>
<tr>
<th>UFR (mL/hour/kg)</th>
<th>Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>1.00</td>
</tr>
<tr>
<td>6-7</td>
<td>1.03</td>
</tr>
<tr>
<td>8-9</td>
<td>1.09</td>
</tr>
<tr>
<td>10-11</td>
<td>1.15</td>
</tr>
<tr>
<td>12-13</td>
<td>1.23</td>
</tr>
<tr>
<td>14+</td>
<td>1.43</td>
</tr>
</tbody>
</table>

Total Volume Loading and Mortality Risk

1 year cumulative FO-based analysis

- Overhydrated
- Nonoverhydrated

Volume loading creates markedly abnormal cardiac pressure.

The loading between treatments create high wall stresses, LVH, and systolic and diastolic dysfunction.
PATHOPHYSIOLOGY AND OUTCOMES: HEMODIALYSIS

- Fluid & Na Overload
 - Uncontrolled Hypertension
 - Left Ventricular Hypertrophy
 - Heart Failure
 - Hospitalizations and Death

- High Ultrafiltration Rate
 - Intradialytic Hypotension
 - Cramping, Dizziness, Nausea, etc.
 - "Early Sign-Offs" and "No-Shows"

- Organ Stunning
 - Long Post-Dialysis Recovery Time
 - Poor QOL

- Chronic between treatment fluid loading

- Intra-treatment fluid removal
PATHOPHYSIOLOGY AND OUTCOMES:
PERITONEAL DIALYSIS (PD)

Fluid Overload

Driven by volume issues

Uncontrolled Hypertension

Driven by dialytic volume issues

Left Ventricular Hypertrophy

Heart Failure

Hospitalizations and Death

50% of PD patients persistently volume overloaded upon incidence

Over time RRF and membrane UF decline adding to PD volume loading

Fluid overload is predictive of early PD Technique failure
FLUID OVERLOAD

• HOW DO WE DECIDE DRY WEIGHT
 • PHYSICAL EXAM
 • CARDIAC BIOMARKERS
 • LUNG ULTRASOUND
 • ECHOCARDIOGRAM
 • BIOIMPEDANCE
39,566 INCIDENT PATIENTS OVER 5 YEARS

18,371 (46%) PATIENTS WERE OVERHYDRATED AT BASELINE.

Volume status of PD patients at initiation and 3 year follow up (iPOD PD)
28 countries – 135 centers. N = 1092 incidents pts

- Overload: 56.4% (Relative Volume Overload > 7%)
- Mean overload: 1.9 ± 2.4 L
(3.3 ± 2.08 L in the overload group)\(^1\)

- Relative Volume overload > 7%
 was 48%, 49%, and 53%
after 1, 2, and 3 years\(^2\)

Fluid overload associated with death and technique failure
Fluid overload did not preserve Residual Renal Function

FLUID OVERLOAD IN PERITONEAL DIALYSIS AND INCREASED RISK OF DEATH\(^1\)

\(^1\)VAN BIESEN WV ET AL, FOR THE IPOD-PD STUDY GROUP. EVOLUTION OVER TIME OF VOLUME STATUS AND PD-RELATED PRACTICE PATTERNS IN AN INCIDENT PERITONEAL DIALYSIS COHORT. CJASN JUN 2019; 14 (6) 882-893.
BIOMARKERS IN PD

• SIGNIFICANTLY ELEVATED NT PROBNP IN ESRD IS ASSOCIATED WITH:
 • VOLUME OVERLOAD\(^1\)
 • HYPERTENSION\(^1\)
 • ATRIAL FIBRILLATION\(^2\)

1. Surachet Vongsanit · Andrew Davenport Journal of Nephrology
 https://doi.org/10.1007/s40620-019-00633-y Received: 14 May 2019 / Accepted: 30 July 2019

LUNG ULTRASOUND – U/S GUIDED VS USUAL CARE

LIMITATIONS: EXPLORATORY STUDY; SMALL SAMPLE SIZE
*NOT APPROVED FOR SALE IN THE US

• US-GUIDED STRATEGY VS “USUAL CARE” FOR DRY WEIGHT REDUCTION:
 1. DECREASED CARDIAC CHAMBER DIMENSIONS
 2. DECREASED LV FILLING PRESSURE
 3. NO DIFFERENCE IN SYSTOLIC PERFORMANCE

GAP BETWEEN CLINICALLY ASSESSED AND BIOIMPEDANCE MEASURED HYDRATION STATUS

PLEASE NOTE THAT BCM DEVICE IS NOT APPROVED FOR SALE IN THE UNITED STATES

- CLINICAL ASSESSMENT CRITERIA, INCLUDING INCREASED BLOOD PRESSURE, WAS NOT RELIABLE ENOUGH TO GUIDE TREATMENT DECISIONS
 - 15% OF OVERHYDRATED PATIENTS EXHIBITED NORMAL OR LOW BLOOD PRESSURE
- OVERHYDRATED STATUS WITH NORMAL OR LOW BLOOD PRESSURE MAY BE A BETTER INDICATION OF CARDIAC DYSFUNCTION

BCM data showed clinicians incorrectly judged participants to be normohydrated or dehydrated, despite similar eGFRs across groups

RESIDUAL RENAL FUNCTION

• PERITONEAL DIALYSIS
 • WHAT WE KNOW –
 • RRF IS VOLUME WHICH HELPS WITH UF IN THE PD PATIENT
 • RRF IN PD IS ASSOCIATED WITH IMPROVED TECHNIQUE SURVIVAL AND PATIENT SURVIVAL
 • ISPD SUPPORTS EFFORTS TO MAINTAIN RRF IN PD
 • MINIMIZE NEPHROTOXINS – NSAID, IV CONTRAST, AMINOGLYCOSIDES
 • AVOID DEHYDRATION
 • MAXIMIZE UOP
 • HIGH DOSE FUROSEMIDE
 • US > 200 MG DAILY
 • EUROPE - 500 MG PO BID
 • MAINTAIN GFR
 • ACE INHIBITORS
RESIDUAL RENAL FUNCTION

• PERITONEAL DIALYSIS
 • WHERE DOES VOLUME PLAY A ROLE?
 • PRESCRIPTION FOR VOLUME CONTROL
 • SOME SAY KEEP PATIENT VOLUME OVERLOADED TO PROTECT RRF
 • THEY ARE WRONG. SEE PREVIOUS SLIDES.
 • HYPOVOLEMIA ASSOCIATED WITH DECLINE IN RRF
 • HYPERVOLEMIA DOES NOT PROTECT RRF
RESIDUAL RENAL FUNCTION

• HOME HEMODIALYSIS

 • WHAT WE KNOW –
 • RRF DECLINED FASTER IN FHN NOCTURNAL TRIAL WITH MFD
 • RRF IS PRESERVED AS WELL AS SEEN IN PD WITH THE KIHDENEY TRIAL IN EUROPE (MFD WITH DAILY DIALYSIS)

 • WHAT WE THINK – TRY TO PRESERVE RRF IS OK
 • MINIMIZE NEPHROTOXINS – NSAID, IV CONTRAST, AMINOGYCOSIDES
 • AVOID DEHYDRATION
 • FUROSEMIDE SEEMS REASONABLE

• WHAT WE DON’T KNOW
 • DOES RRF IMPACT SURVIVAL OR HOSPITALIZATION IN MFD/HHD
PRESCRIBING RRT FOR VOLUME CONTROL
SHORTER DWELL TIMES MAY LEAD TO INCREASED SERUM SODIUM, RESULTING IN INCREASED THIRST1

- AQUAPORIN CHANNELS PRODUCE SODIUM FREE OR "FREE WATER" TRANSPORT DURING THE 1ST HOUR OF DWELL
- SODIUM DIFFUSION INCREASES AFTER 2 HOURS OF DWELL
- SODIUM SIEVING CAN CONTINUE \textgreater{}2 HOURS INTO DWELL DEPENDING ON TRANSPORT TYPE AND DEXTROSE CONCENTRATION

ULTRAFILTRATION VARIES BY DWELL TIME, MEMBRANE EFFICIENCY, AND DEXTROSE CONCENTRATION¹

- **USE AVERAGE TRANSPORTER STATUS FOR THE INITIAL PRESCRIPTION**
- **MAXIMUM UF IS BETWEEN 2 – 6 HOURS DEPENDING ON DEXTROSE CONCENTRATION**
- **NEGATIVE UF NOT LIKELY BEFORE 7 – 14 HOURS**
- **UF GOALS SHOULD BE BALANCED WITH LEVEL OF DEXTROSE EXPOSURE**

Average transporter status modeled from source.
KEYS FOR SODIUM AND VOLUME REMOVAL IN PD

GOALS OF THERAPY
• MINIMIZE SODIUM SIEVING
• MAXIMIZE ULTRA FILTRATION
• MAXIMIZE UOP AND RRF
• AVOID DRY DAYS
 • ESPECIALLY WITH LOSS OF RRF

PATHWAYS TO GOALS
• DWELL TIMES 2 – 5 HOURS
• ADEQUATE DWELL VOLUMES
• MEASURE PET
• DIURETICS, AVOID NEPHROTOXINS, ? ACE – INHIBITORS
• AVOID HYPO AND HYPER VOLEMIA
• WITH CYCLER CONSIDER DAYTIME EXCHANGE
• ICODEXTRIN FOR HIGH TRANSPORTERS
HHD - FHN studies: Significant **Cardiovascular** Benefits

FREQUENT HEMODIALYSIS ASSOCIATED WITH THE FOLLOWING 12-MONTH IMPROVEMENTS

- **12%** Reduction in left ventricular mass\(^1,2\)
- **20%** Fewer hypotensive episodes\(^1\)
- **7%** Decrease in systolic blood pressure\(^1\)
- **36%** Less antihypertensives consumed\(^1\)

How to prescribe patient centered hemodialysis at home in 3 steps

1. Frequency
 Medical indications for increased time and duration

2. Treatment time
 Balancing ultrafiltration and volume status

3. Dialysate volume
 Small solute clearance and saturation
5+ DAYS PER WEEK
- Improved BP control & survival\(^1,4-8\)
- Reduced LVH & cardiovascular hospitalizations\(^4,7,8,10\)
- Reduced UFR, recovery time & hypotensive episodes\(^3-5,10-15\)
- Improvements in sleep quality, RLS & HRQoL\(^5,16-18\)

References at end
STEP 2: TREATMENT TIME

Goal UFR 6.5 ml/kg/hr

FREQUENCY □ HOURS PER TREATMENT

1. **Treatment Frequency**
2. **Treatment Time**
3. **Goal UFR**

INPUT

- mL/wk ÷ Body Weight
 - (~950 mL/day x 7 days)
 - 6,650 mL/wk ÷ 68 kg
 - = 98 mL/kg/wk

CALCULATE

- UF Rate
 - 98 mL/kg/wk ÷ 6.5 mL/kg/hr
 - = 15 hrs/wk

RESULT

- hrs/wk ÷ sessions/wk
 - 15 hrs/wk ÷ 5 sessions/wk
 - = 3 hours/session

PRESCRIBE

- Most patients will control UF with 15 hours/week (15 – 18 hours seems reasonable for diurnal therapy)
STEP 3: DIALYSATE VOLUME
HOW MUCH VOLUME SHOULD MRS. C USE?

<table>
<thead>
<tr>
<th>Weight (kg)</th>
<th>6 days/week</th>
<th>5 days/week</th>
<th>4 days/week</th>
<th>3.5 days/week</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>20</td>
<td>25</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>25</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>120</td>
<td>25</td>
<td>30</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>140</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

Allows for UF of <1.5 L/day.
Minimum of 20L of dialysate per treatment. Minimum of 12 hours of treatment per week. 15 hours of treatment per week is typical.
Right prescription, right therapy every day
- Whether In-center, PD or HHD

- Assess adequate and optimal prescription every clinic (at least)
 - **Salt and water**, Kt/V, Nutrition, QOL
 - Patient and partner
 - Reasons for modifications
 - “Adequate” dialysis not achieved
 - Residual renal function declined
 - Cardiovascular decline
 - Sarcopenia, infections etc
 - Patient and/or partner depression, burnout
 - Telehealth / records with unacceptable adherence

- Is Prescription correct?
- Is Therapy correct?
 - Know when to change therapies and why
 - Modification of frequency, time, solo, nocturnal as needed
 - Consider Respite
OTHER MANAGEMENT

VOLUME CONTROL

• DIET
 • MUST RESTRICT SALT AND WATER IN
 • IN-CENTER
 • PD
 • HOME HEMODIALYSIS
 • TRANSPLANT

MEDICATIONS

• BETA BLOCKER
• ACE INHIBITOR
 • ALSO PRESERVE RRF
• CALCIUM CHANNEL BLOCKERS
• OUTCOMES OF MEDS (INTENSIVE BP CONTROL)\(^1\)
 • INCREASED NUMBER OF MEDS
 • DRY WEIGHT ROSE
 • INTRADIALYTIC SYMPTOMS INCREASED
 • NON STATISTICAL DIFFERENCE IN LVM
 • SMALL STUDY BUT MORE DEATHS

 https://doi.org/10.1681/ASN.2017020135
CLINICAL EVIDENCE FOR BENEFITS OF INCREASED FREQUENCY AT HOME

REFERENCES

CLINICAL EVIDENCE FOR BENEFITS OF INCREASED FREQUENCY AT HOME

11. WEINHANDL, COLLINS, KRAUS. ULTRAFILTRATION RATES WITH MORE FREQUENT HOME HEMODIALYSIS. ORAL PRESENTATION. 2017 ADC.

