The Physiology of Learning

Mary Schira PhD, RN, ACNP–BC
schira@uta.edu

Focus of Session

- How does learning happen?
- What is the role of attention, memory, information processing, recall?
- How do disease states affect – alter the ability to learn?

Learning

- Process that modifies behavior
- Requires attention, short term/working memory, long term memory, retrieval of memory information
- Need to manage working memory capacity
- Facilitate information transition from short (working memory) to long term memory
All information passes through CNS (incoming stimuli + outgoing responses).
Information is mediated within CNS
Information carried by neurons, passed from neuron to neuron
Within neuron, information transmitted electrically due to flow of ions
- Relies on action potentials, synapses, neurotransmitters
Significant change in brain during cognitive task
- Increased blood flow, especially frontal cortex

Central Nervous System

- Neuron fires – creates action potential – synapse – chemicals released from vesicles – enter synaptic cleft – chemicals taken up – repeat
- Every time learn, neural circuits in brain change
- Efficiency of synapses increase – as result, passing impulses facilitated

Synapses and Learning
Memory

- Essential to all learning
- Allows to store and retrieve information
- PROCESS
- No single place, structure in brain where occurs or stored

Attention is basic....

- Increases sensitivity of brain to information
- Focuses neural energy
- Reticular Activating System relays messages to the brain
- Voluntary and involuntary
Short Term Memory

- Frontal lobe
 - Keeps information "online" so can manipulate, use the information
 - Need for concentration, follow instructions
 - In order to work, need to remain focused and block distractions (attention).

Store sounds, images, words

3 Operations
 - Iconic (image)
 - Acoustic (sound)
 - Working (store until use)

- Sorted, coded/compared, rehearsed, remodeled

Working Memory

- Operates within short term memory
- Manipulates information temporarily
- 4–5 pieces of information; 10–15 seconds
- Discard the info OR help move the info to long term memory
- Helps process, store, retrieve from long term memory
- MEANING MATTERS
Working Memory

- Why discard?
 - Not enough time to move to long term
 - Lack of interest
 - Competition of new information
 - Decays
- Takes neural effort to keep data in working memory
- When exceed 15"ish" seconds, can overload
- Overload decreases function AND ability to retain

Long Term Memory

- Temporal lobe
- Store information based on meaning and importance
- Store for extended period of time
- Memories are finite (don't use it, you lose it)
- Provides framework for new information – create knowledge structures by association
- Each time a memory is retrieved for comparison and remodeled, becomes more permanent
Long Term Memory

- 2 Types
 - Explicit
 - Implicit
- 3 Operations
 - Encode
 - Store
 - Retrieve

Not capacity limited
Activate long term memory
Links and add new to existing old
Associate then accommodate
Effects of Physiologic Environment

- Electrolyte balance, availability
- Disease processes
 - Heart Failure
 - Diabetes
 - Cancer therapy
- General anesthesia
- Sleep
 - Supports brain plasticity and learning
 - REM sleep and slow wave sleep
 - Lack of sleep decreases ability to consolidate/associate memories
 - Multiple reasons for poor sleep in CKD (restless legs, sleep apnea, sleep hygiene)
 - Poor sleep decreases Insulin sensitivity
 - Neurohormonal state of brain best early morning

Physiologic Environment – CKD

- Hyperparathyroidism
- Anemia
- Cardiovascular disease
- Prior stroke
- Reduced gray matter volume
- Oxidative stress
- Chronic volume overload
Patterns of Impairment – ESKD

- Consistent deficits across cognitive domains along continuum of severity
- Attention, executive function, working memory
- Clinical and subclinical
- In Hemodialysis (majority of work)
 - Executive function decreases over time
 - Memory may stabilize and/or improve with dialysis
 - Improvement is “relative”
- Less information related to peritoneal dialysis and transplant

“Executive Function”

- Ability decide, plan, implement and evaluate behavior for specific goal
- Involves memory, processing information
- Prefrontal, frontal, cortex

Examples from the Literature

- 42 studies; 3500 participants
- Deficits in attention, memory, executive function > general population.
- No major differences between HD and PD or non–dialysis CKD
- Suspected etiologies
 - Accelerated aging
 - Vascular type dementia

- SPRINT–MIND (cognition substudy SPRINT)
- 2700 participants
- Higher Albumin:creatinine ratio associated with poorer executive function, attention
- Lower eGFR associated with poorer executive function, attention, memory

- 314 participants, evaluated yearly for avg. 2 yrs.
- Measured during 1st hr of HD treatment
- Significant decline executive function
- Significant increase memory
- Proposed explanation
 - Age “matters” more for executive function than memory
 - Baseline CVD, DM non–significant decline for executive function, not memory
 - Dialysis vintage not significant for either

- 26 participants
- Measured during short & long interdialytic intervals
- Cognitive function tests + ecological momentary assessment
- Working memory, recall, memory diminished but not “substantial”
- No consistent relationship cognitive function tests and reports of impairment

How do we maximize learning?

- ONE way is to manage limitations of working memory
- HOW?
 - Move from easy to challenging material
 - Limit distractions
 - Provide practice
 - “Chunking”
 - Small parts at a time
- Activate long term memory
 - Link new to existing old
 - Associate and accommodate.
Take Homes

- Need “intact” cognitive functions for learning.
- Executive function, memory impaired when compared with general population
- Treatment may improve some functions but not to “normal”
- Incorporate understanding of how memory “working” into patient education interventions.