Disclosure

• Consultant: DaVita
Outline

• Review PD principles
• Review clinical applications
• Monitor adequacy
• Adjust prescription of patient with failing Kt/V
What should an ideal dialysis prescription include?

- Adequate solute removal
 - Urea
 - Middle molecules
 - Phosphate
 - Electrolytes

- Adequate fluid removal
 - Minimize glucose exposure
 - Diuretics

- Clinical assessment of patient governs change in prescription
 - Sense of well being
 - Blood pressure control
 - Nutritional status

- Minimize burden and maximize benefit
PD Principles: Transport characteristics

Solute Removal
- More rapid transporters saturate dialysate quickly and easily clear solute

Fluid Removal
- Glucose gradient drives fluid removal. More rapid transporters lose gradient quicker and remove less fluid over time
PD Principles: Urea Kinetics

After 4-6 hours dialysate urea saturation does not increase
Early saturation is more rapid
PD Principles: Transport of non-urea solute:
Some solutes saturate slowly.
After 4-6 hours urea removal may not increase but other solutes will!

To remove middle molecule need longer contact time
PD Principles:
Maximizing small versus middle molecule clearance

Figure 1 – A comparison of peritoneal clearances of creatinine (light bars) and β_2-microglobulin (B2M; dark bars) with different numbers of peritoneal dialysis (PD) exchanges over 24 hours in incremental PD. The clearance of creatinine increased almost linearly with the increasing number of exchanges (*$p < 0.05$), but the clearance of B2M was not different among the patient groups.

Figure 4 – A comparison of peritoneal clearances of creatinine (light bars) and β_2-microglobulin (B2M; dark bars) in 8 patients with 2 peritoneal dialysis (PD) exchanges over a period of 12 hours and 24 hours per day. Creatinine clearance was almost the same whether the patients performed 2 exchanges of PD over a period of 12 hours or over 24 hours per day. In contrast, the clearance of B2M almost doubled (*$p < 0.05$).
PD Principles:
UF Profile in High Transporters Dextrose vs Icodextrin

PD Principles: Three Pore Model

Interstitium

50% osmotic UF + Na-sieving during hypertonic dwell

Small Solutes

50% osmotic UF + small solute transport

Capillary lumen

Aquaporin (semipermeable membrane)

Dense intercellular fibers restrict transport

Loose intercellular fibers permit transport of macromolecules

Small solute + protein loss

Protein

Glycocalyx
PD Principles: Na Sieving
Gomes et al NDT 24:3513, 2009

Fig. 2. D/P sodium in the 2.27% and 3.86% PET (P < 0.001, at any point beyond 0 min).

Courtesy Dr. T. Golper
Sodium Sieving and Icodextrin

Lack of Na sieving with Icodextrin implies UF through Na permeable “pore”

Ho-dac-Pannekeet et al, KI, 1996
How do we measure PD Kt/V?

K = Clearance

\(t = \) time

\(V = \) Volume of distribution of Urea (TBW)

\[K = \frac{(UV)}{P} \]

Peritoneal Dialysis

\[K = \frac{\text{Dialysate urea} \times \text{Drain volume}}{\text{Plasma urea}} \]

Weekly \(K_t/V_{\text{urea}} \) =

\[\frac{(D/P_{\text{urea}})(\text{Dialysate drain volume/day})(7 \text{ days})}{V_D \text{Urea (TBW)}} \]

\(D/P_{\text{urea}} \) is percent saturation and is determined by dwell time
How do we adjust PD Kt/V

Peritoneal Dialysis

\[
\frac{Kt}{V} = \frac{(D/P_{\text{urea}})(\text{Dialysate drain volume})}{V_D \text{Urea (TBW)}}
\]

\(\frac{Kt}{V} \) is percent saturation and is determined by dwell time

How do you increase Kt/V?

- Can’t change \(V_D \text{Urea (TBW)} \)
- Focus on Kt or the dialysis dose
- We can increase Kt by an increase in saturation of dialysate volume or increase in dialysate volume or both.
Relationship Between Time, Transport Type & Clearance

\[
\text{D/P} \times \text{X} \quad \text{DV} = \quad \text{DV/P} = \text{clearance}
\]

D/P Creatinine

Total Dialysate V

CrCL/exchange

- **H Transport**
- **L Transport**
How do we adjust PD Kt/V

Peritoneal Dialysis

\[
\frac{Kt}{V} = \frac{(D/P_{urea})(\text{Dialysate drain volume})}{V_D \text{ Urea (TBW)}}
\]

Variables

- (D/P_{urea})
- Dialysate drain volume
- $V_D \text{ Urea (TBW)}$

Fixed

- V_D

D/P_{urea} is percent saturation and is determined by dwell time

Optimize dwell time
Exchange time ≠ dwell time
“Typical” CAPD Prescription

2.5 – 3.0 L

10 PM 6 AM 10 PM

2.5 L 2.5L 2.5 L

Noon 6 PM

Dwell times > 4 hours

2.5 L (Icodextrin)
“Typical” Cycler Prescription

2.0 – 2.5 L

2 - 2.5L Icodextrin
“Typical” Cycler Prescription

2 - 2.5L Icodextrin
Impact of fill and drain time on dwell time

Slide courtesy of Dr S. Mujais
Optimize dwell time

• Lost dwell time
 – Lost clearance
 – Lost ultrafiltration

• Monitor for poor catheter flow
 – Poor catheter flow increases infusion/drain time and shortens dwell time

• Do not add exchanges to cycler PD without increasing therapy time
Cycle Frequency and Dwell Time

Dwell Time (minutes/cycle) vs Number of Cycles for different cycle times:
- 9 hrs
- 8 hrs
- 7 hrs
How do we adjust PD Kt/V

Peritoneal Dialysis

\[
\frac{Kt}{V} = \frac{(D/P_{urea}) (\text{Dialysate drain volume})}{V_D \text{Urea (TBW)}}
\]

Variables

Fixed

D/P_{urea} is percent saturation and is determined by dwell time

Optimize exchange volume
Increase volume at night.
Intraperitoneal volume increases during exchange.
Monitor adequacy

- Clinical assessment of patient governs change in prescription
 - Sense of well being - monthly
 - Blood pressure control - weekly
 - Nutritional status – monthly
 - Kt/V – every 90 days
 - Includes PD and residual renal function
 - If patient is not anuric need to monitor for loss of urine output
Case #1

• 69 year old M with ESRD on PD for approximately 10 months coming in for monthly visit
• Diabetes, hypertension
• Has significant residual renal function (RRF)
• Current Rx- 4 Cycles – 4 cycles overnight with 2400 cc, 1 hour 30 min dwell time
 – Dry day
• Subjectively feels well, energy and appetite good
• Blood sugars mildly elevated
Case #1 Kt/V

<table>
<thead>
<tr>
<th>Wk Ending 08/06</th>
<th>Wk Ending 07/30</th>
<th>Wk Ending 07/23</th>
<th>Wk Ending 07/16</th>
<th>Wk Ending 07/09</th>
<th>Wk Ending 07/02</th>
<th>First Prior</th>
<th>Second Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>NINE</td>
<td>POTASSIUM</td>
<td>BUN</td>
<td>LWK/1.73 RESID CC</td>
<td>LWK/1.73 PDF CC</td>
<td>LWK/1.73 TOTAL CC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.27 H</td>
<td>3.2 L</td>
<td>55 H</td>
<td>46 H</td>
<td>64.24</td>
<td>100.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.32 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.7 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>46 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68.95 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36.54 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105.50 06/02</td>
</tr>
<tr>
<td>X</td>
<td>KT/V Residual</td>
<td>KT/V PDF</td>
<td>KT/V Total PD</td>
<td>IPNA-PD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>1.15</td>
<td>1.76</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.25 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.18 06/02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.83 06/02</td>
</tr>
</tbody>
</table>

Home Meds Start Depends
Results: Total Kt/V
(Randomized control trial – 3 target Kt/V groups)

Renal Kt/V

Peritoneal Kt/V

How accurate is measurement of RRF?

<table>
<thead>
<tr>
<th></th>
<th>Rodby</th>
<th>Virga</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>42</td>
<td>24</td>
</tr>
<tr>
<td>Coefficient of Variation (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Kt/V</td>
<td>8.1</td>
<td>4.4</td>
</tr>
<tr>
<td>PD Kt/V</td>
<td>7.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Residual Kt/V</td>
<td>35.4</td>
<td>23.2</td>
</tr>
<tr>
<td>Urine Volume</td>
<td>35</td>
<td>20.3</td>
</tr>
</tbody>
</table>

1) Weekly Kt/V is calculated based on a single day collection
2) Coefficient of Variation of residual Kt/V is much greater than PD Kt/V.
3) Contribution of RRF to total Kt/V should be discounted to assure than minimum Kt/V is achieved daily. Acknowledge that this might provide “overdialysis”.

Case #1 - Kt/V

<table>
<thead>
<tr>
<th>Analysis Adequacy</th>
<th>Wk Ending 08/06</th>
<th>Wk Ending 07/30</th>
<th>Wk Ending 07/23</th>
<th>Wk Ending 07/16</th>
<th>Wk Ending 07/09</th>
<th>Wk Ending 07/02</th>
<th>First Prior</th>
<th>Second Prior</th>
</tr>
</thead>
<tbody>
<tr>
<td>NINE</td>
<td>6.27 H</td>
<td></td>
<td></td>
<td></td>
<td>6.15 H</td>
<td></td>
<td>5.32 06/02</td>
<td>5.26 05/06</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>3.2 L</td>
<td></td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
<td>3.7 06/02</td>
<td>3.7 05/06</td>
</tr>
<tr>
<td>BUN</td>
<td>55 H</td>
<td></td>
<td></td>
<td></td>
<td>46 H</td>
<td></td>
<td>46 06/02</td>
<td>40 05/06</td>
</tr>
<tr>
<td>LWK/1.73 RESID CC</td>
<td>46.69</td>
<td></td>
<td></td>
<td></td>
<td>64.24</td>
<td></td>
<td>68.95 06/02</td>
<td>84.34 05/06</td>
</tr>
<tr>
<td>LWK/1.73 PDF CC</td>
<td>29.43</td>
<td></td>
<td></td>
<td></td>
<td>35.83</td>
<td></td>
<td>36.54 06/02</td>
<td>33.99 05/06</td>
</tr>
<tr>
<td>LWK/1.73 TOTAL CC</td>
<td>76.12</td>
<td></td>
<td></td>
<td></td>
<td>100.06</td>
<td></td>
<td>105.50 06/02</td>
<td>118.33 05/06</td>
</tr>
<tr>
<td>KT/V Residual</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td>0.78</td>
<td></td>
<td>0.93 06/02</td>
<td>1.18 05/06</td>
</tr>
<tr>
<td>KT/V PDF</td>
<td>1.15</td>
<td></td>
<td></td>
<td></td>
<td>1.33</td>
<td></td>
<td>1.25 06/02</td>
<td>1.29 05/06</td>
</tr>
<tr>
<td>KT/V Total PD</td>
<td>1.76</td>
<td></td>
<td></td>
<td></td>
<td>2.11</td>
<td></td>
<td>2.18 06/02</td>
<td>2.47 05/06</td>
</tr>
<tr>
<td>HPA/PD</td>
<td>0.81</td>
<td></td>
<td></td>
<td></td>
<td>0.81</td>
<td></td>
<td>0.83 06/02</td>
<td>0.82 05/06</td>
</tr>
</tbody>
</table>

Home Meds

- Start: DC
Case#1 - solution

• Increase exchange volume?
 – Will increase urea clearance but not middle molecule removal

• Increase exchanges?
 – On cycler: Increase 4 to 5 exchanges?
 – Will need to be on PD longer = BURDEN
 • Will have minimal impact on middle molecule

• Needs day time fluid – last fill
 – Avoid high volumes during the day

• Minimize glucose exposure
 – Icodextrin
Questions?