Managing Chronic Hyperkalemia in Renal Disease: New Tools

Prof. Bernard Canaud
Center of Excellence Medical EMEA, Bad Homburg, G & University of Montpellier, School of Medicine, Montpellier, F

2016 Annual Dialysis Conference
Seattle, Washington - February 27-March 1, 2016
Disclosure

Speaker name: Prof. Bernard Canaud

☐ I have the following potential conflicts of interest to report:

☐ Consulting

☒ Employment in industry (FMC)

☐ Shareholder in a healthcare company

☐ Owner of a healthcare company

☐ Other(s)

☐ I do not have any potential conflict of interest
Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 - Patients at risk
 - Risks and complications

2. Chronic hyperkalemia: indirect consequences – clinical concerns
 - Limit usage of medications protecting kidney and cardiovascular system

3. Monitoring of chronic hyperkalemia: pitfalls and errors

4. Managing chronic hyperkalemia in CKD patients
 - Traditional ways
 - New tools

5. Take home message
Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 - Patients at risk
 - Risks and complications

2. Chronic hyperkalemia: indirect consequences – clinical concerns
 - Limit usage of medications protecting kidney and cardiovascular system

3. Monitoring of chronic hyperkalemia: pitfalls and errors

4. Managing chronic hyperkalemia in CKD patients
 - Traditional ways
 - New tools

5. Take home message
Distribution of Serum K in Diabetic and Non-Diabetic Patients

Nested case–control study in outpatient renal clinic
360 CKD patients: 180 T2 diabetics/180 non-diabetics

Prevalence of Hyperkalemia in Diabetic and Non-Diabetic Patients

Nested case–control study in outpatient renal clinic
360 CKD patients: 180 T2 diabetics/180 non-diabetics

Prevalence of Hyperkalemia in Diabetic and Non-Diabetic Patients According to CKD Stage

Nested case–control study in outpatient renal clinic
360 CKD patients: 180 T2 diabetics/180 non-diabetics

Patients at Risk of Hyperkalemia

- Chronic kidney disease (GFR<30ml/min)
- Distal Tubular Acidosis (type IV) with hyperkalemia
- Acute kidney injury
- Cardiac failure (Cardio-Renal syndrome)
- Diabetics (Diabetic nephropathy, Degenerative)
- Elderly
- Combined pathologies
- Patients receiving drugs that modulate renal elimination of potassium
 - Reducing production of angiotensin II (angiotensin-converting enzyme inhibitors, direct renin inhibitors, β-adrenergic receptor antagonists)
 - Blocking angiotensin II receptors (angiotensin receptor blocker blockers)
 - Antagonizing action of aldosterone on mineralocorticoid receptors (mineralocorticoid receptor blocker blockers)
K is a Serial Killer in Chronic Kidney Disease Patients
Hyperkalemia

Acute Hyperkalemia
- Imminent risk of death
- Emergency action required

Chronic Hyperkalemia
- Delayed risk of death
- Long-term action required
Typical Case of Severe Hyperkalemia
Almost lethal...

A 62-year old man with chronic renal insufficiency reported having reduced exercise tolerance for the previous week...

Serum Potassium was 9.1mmol/l
Serum Potassium was 3.1mmol/l

IV Calcium Chloride
IV Sodium Bicarbonate
Glucose + Insulin therapy and Hemodialysis
Cardiotoxicity of Hyperkalemia

Action potential of myocardial contractile cell

Depolarization: sodium influx
Rapid depolarization: potassium efflux
Plateau: calcium influx
Repolarization: potassium efflux
Hyperkalemia*

Potassium Gauge Meter

Hyperkalemia

* Normal pH, Normal AB status
Long Interdialytic Interval Increases Mortality Risk in HD Patients

Annualized Mortality Rate

Annualized CVD Admission Rate

Relative risk of mortality (all-cause) by day

US
Europe
Japan

22,163 HD patients DOPPS US, Europe, Japan

32,065 HD Patients - USA
End-Stage Renal Disease Clinical Performance Measures Project

Cause of Death in Prevalent Dialysis Patients in the United States, 2005 to 2007

Saravanan P et al, Circ Arrhythm Electrophysiol. 2010;3:553-559
Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 - Patients at risk
 - Risks and complications

2. Chronic hyperkalemia: indirect consequences – clinical concerns
 - Limit usage of medications protecting kidney and cardiovascular system

3. Monitoring of chronic hyperkalemia: pitfalls and errors

4. Managing chronic hyperkalemia in CKD patients
 - Traditional ways
 - New tools

5. Take home message
Potassium Balance in Normal Subject
Potassium Homeostasis – Zero Balance

<table>
<thead>
<tr>
<th>Dietary Intake</th>
<th>100 mM/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary Output</td>
<td>92 mM/day</td>
</tr>
<tr>
<td>Stool Output</td>
<td>8 mM/day</td>
</tr>
<tr>
<td>Normal Plasma [K+]</td>
<td>3.5 - 4.5 mM/L</td>
</tr>
<tr>
<td>ECF K+</td>
<td>65mM (1-2%)</td>
</tr>
<tr>
<td>ICF K+</td>
<td>3500 mmol (98-99%)</td>
</tr>
</tbody>
</table>
Potassium Balance in CKD5D Patient
No More Potassium Homeostasis – Positive Balance

Dietary Intake
100 mM/day

Plasma [K+]
3.5 – 6.0 mM/L

Stool Output
8 mM/day

Urinary + Dialysis Output
80 mM/48hr

ICF K+
3500 mmol (98-99%)

ECF K+
65 mM (1-2%)

Potassium Gauge Meter
Transcellular Shifts of Potassium

Acidosis

\[\text{ECF} \rightarrow \text{ICF} \rightarrow \text{ECF} \]

\[H^+ \rightarrow K^+ \rightarrow \text{Mg}^{++} \rightarrow \text{Ca}^{++} \]

Alkalosis

\[\text{ECF} \rightarrow \text{ICF} \rightarrow \text{ECF} \]

\[H^+ \rightarrow K^+ \rightarrow \text{Mg}^{++} \rightarrow \text{Ca}^{++} \]
Conditions Reducing Potassium Excretion Increase Risk of Hyperkalemia

Potassium in diet

RAAS Inhibition
Aldosterone Antagonist

K absorption from small intestine

↓ GFR

AKI-CKD

CRS

↓ GFR

Diabetes

Reduced K excretion

HD

DM
Indirect Consequences of Hyperkalemia

Limit usage of protective medications

Renin Angiotensin Aldosterone System (RAAS)
Aldosterone Blockade (AB)

Antihypertensive
Nephroprotection
Cardioprotection
Vasculoprotection
Neuroprotection
Antiproteinuric
Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 - Patients at risk
 - Risks and complications

2. Chronic hyperkalemia: indirect consequences – clinical concerns
 - Limit usage of medications protecting kidney and cardiovascular system

3. Monitoring of chronic hyperkalemia: pitfalls and errors

4. Managing chronic hyperkalemia in CKD patients
 - Traditional ways
 - New tools

5. Take home message
Phlebotomy and Blood Collection May Affect Hyperkalemia
Hyperkalemia and ECG

<table>
<thead>
<tr>
<th>Approximate Serum $[K^+]$ (mEq/L)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6–7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T wave tenting
CRISIS (Chronic Renal Insufficiency Standards Implementation Study)

Prospective epidemiological study of outcomes in chronic kidney disease (CKD).

376 CKD patients were eligible for the study

163 had ECG + serum potassium measurement

19 patients were excluded
(complete left or right bundle branch block or a ventricular paced ECG rhythm)

145 included in the final study cohort

Variation in the Relationship Between Serum K and the Amplitude of the Tallest T:R Wave

T:R Ratio of the amplitude of the tallest precordial T-wave and R-wave

T Wave Tenting Common but Not Predictive
T:R Less Sensitive but More Specific

• **Tenting** was as common in normal range serum potassium as hyperkalemia (33 versus 31%) and less common than in left ventricular hypertrophy (44%)

• **T:R** was less sensitive (24 versus 33%) but more specific (85 versus 67%) than tenting at correctly identifying hyperkalemia ≥6.0 mmol/L.
Cardiovascular and Sudden Death Risk As Estimated from T-Wave to R-Wave Ratio

Cardiovascular event-free survival

Cumulative event-free survival for sudden death

Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 − Patients at risk
 − Risks and complications
2. Chronic hyperkalemia: indirect consequences – clinical concerns
 − Limit usage of medications protecting kidney and cardiovascular system
3. Monitoring of chronic hyperkalemia: pitfalls and errors
4. Managing chronic hyperkalemia in CKD patients
 − Traditional ways
 − New tools
5. Take home message
Managing Chronic Hyperkalemia

Traditional Tools

You can lower the amount of Potassium in potatoes and sweet potatoes by 1/3 by double boiling them.

1. Wash and peel the potato
2. Cut into thin slices
3. Place in a large pot with water (at least double the amount)
4. Bring water to a boil
5. Drain water.
6. Add water (at least double the amount)
7. Bring water to a boil again and cook until soft.
Increase Urine Excretion with Loop Diuretics

- *Bumetanide*
- Ethacrynic acid (Edecrin)
- Furosemide (Lasix)
- Torsemide (Demadex)

Loop Diuretics*
Thick Ascending Loop of Henle

* Bumetanide
Ethacrynic acid (Edecrin)
Furosemide (Lasix)
Torsemide (Demadex)
Correct Acidosis & Facilitate K Transfer
Sodium Bicarbonate Supplementation
Increase K Excretion in Feces
Resin Binding Potassium in Colon

Potassium in diet

RAAS Inhibition
Aldosterone Antagonist

↓ GFR

Diabetes

K absorption from small intestine

Cation resin exchange binds K in colon

Increased K excretion

Reduced K excretion
Restore K Mass Balance in CKD5 HD Patient
Hemodialysis
Resin Binding Potassium in the Intestine: Old

<table>
<thead>
<tr>
<th>Sodium Polystyrene Sulfonate</th>
<th>Calcium Polystyrene Sulphonate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kayexalate</td>
<td>Sorbisterit</td>
</tr>
<tr>
<td>• Organic enteral potassium-sodium exchange resin</td>
<td>Available in Europe</td>
</tr>
<tr>
<td>• Non-selectively binds potassium and other cations (calcium & magnesium)</td>
<td>• Organic enteral potassium-calcium exchange resin</td>
</tr>
<tr>
<td>• Approved by the US FDA in 1958</td>
<td>• Non-selectively binds potassium and other cations (calcium & magnesium)</td>
</tr>
<tr>
<td>• Commonly given with Sorbitol</td>
<td>• Commonly given with Sorbitol</td>
</tr>
<tr>
<td>• Diarrhea upregulates luminal losses of potassium</td>
<td>• Diarrhea upregulates luminal losses of potassium</td>
</tr>
<tr>
<td>• Uncomfortable</td>
<td>• Uncomfortable</td>
</tr>
<tr>
<td>• Side effects</td>
<td>• Side effects</td>
</tr>
<tr>
<td>• Sodium load</td>
<td>• ECF volume depletion</td>
</tr>
<tr>
<td>• ECF volume depletion</td>
<td>• Pain, Electrolyte imbalance</td>
</tr>
<tr>
<td>• Pain, Electrolyte imbalance</td>
<td>• Diarrhea...</td>
</tr>
<tr>
<td>• Occlusion...</td>
<td></td>
</tr>
</tbody>
</table>
Potassium Exchange Resin

K⁺ being exchanged for Ca²⁺

Sodium Polystyrene Sulfonate

K⁺ being exchanged for Na⁺

Calcium Polystyrene Sulphonate
Clinical Studies Using Sodium Polystyrene Sulfate (Kayexalate) to Reduce Serum K Levels

<table>
<thead>
<tr>
<th>Study</th>
<th>Clinical Trial</th>
<th>Study Design</th>
<th>Participants</th>
<th>Endpoints</th>
<th>Baseline</th>
<th>SPS Therapy vs Placebo and Reduction of K (< 96 h)</th>
<th>SPS Therapy vs Placebo and Reduction of K (> 96 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kessler C et al(^1)</td>
<td>Retrospective cohort study</td>
<td>Single dose (low, mid, and high) of SPS</td>
<td>HTN, DM, CKD, HF, ARF patients with hyperkalemia (K > 5.1 mEq/L) (n = 122)</td>
<td>Mean change in K after SPS treatment</td>
<td>K 5.4 mEq/L (15 g) K 5.5 mEq/L (30 g) K 5.8 mEq/L (45 g) K 5.9 mEq/L (60 g)</td>
<td>Not placebo controlled</td>
<td>NR</td>
</tr>
<tr>
<td>Thompson K et al(^2)</td>
<td>Retrospective cohort study</td>
<td>Pretreated formula or expressed breast milk with SPS before patient use</td>
<td>CKD, AKI patients (< 2 y) with hyperkalemia (K > 5.5 mEq/L) (n = 13)</td>
<td>Mean change in K after SPS treatment in 48 h</td>
<td>K 6.34 mEq/L</td>
<td>Not placebo controlled</td>
<td>NR</td>
</tr>
</tbody>
</table>

Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 - Patients at risk
 - Risks and complications

2. Chronic hyperkalemia: indirect consequences – clinical concerns
 - Limit usage of medications protecting kidney and cardiovascular system

3. Monitoring of chronic hyperkalemia: pitfalls and errors

4. Managing chronic hyperkalemia in CKD patients
 - Traditional ways
 - New tools

5. Take home message
New and Emerging Potassium Binders

- 2 new potassium binders
 - Patiromer
 - Approved by the US FDA for treatment of hyperkalemia on 10/21/2015\(^a\)
 - Mechanism of action: nonabsorbed cation exchange polymer that binds potassium in exchange for calcium predominantly in the distal colon and increases fecal potassium excretion\(^b\)
 - ZS-9*
 - Emerging agent
 - Mechanism of action: inorganic cation exchanger with a crystalline structure that entraps potassium along the entire length of the GI tract\(^c\)

*The US FDA has not yet approved this agent for use.

Patiromer Sorbitex Calcium

patiromer; RLY5016; Relypsa Inc., Redwood City, CA

- A novel potassium exchange polymer
- Powder, dry, odorless for suspension in water
- Consists of spherical beads with an average diameter of 100 μm
- Lower viscosity than polymeric drugs and powder (eg, sodium polystyrene sulfonate)
- Contains sorbitol (29% of weight) and calcium accounts (11%)
 - 2 g of sorbitol + 0.8 g of calcium for every 4.2 g of patiromer
- Patiromer passes through gastrointestinal tract without degradation
- Principal site of action is colon
- Acts approximately 7 hours after ingestion
- Chronic therapy to treat hyperkalemia.
Sodium Zirconium Cyclosilicate (SZ-9)

<table>
<thead>
<tr>
<th>Sodium Zirconium Cyclosilicate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZS-9; ZS Pharma, Inc., Coppell, TX</td>
</tr>
</tbody>
</table>

- A novel potassium exchange crystalline lattice
- ZS-9 is a potassium ion trap that was 3-dimensional structure engineered
 - High affinity to potassium and balanced ratio of exchange ions
- ZS-9 is a highly selective crystalline lattice that preferentially entraps potassium cations over other cations over divalent cations (eg, calcium and magnesium)
- ZS-9 appears to bind ammonium, resulting in net acid loss, systemic reduction in blood urea nitrogen, and elevation in plasma bicarbonate.
- ZS-9 will be available as a tasteless, odorless, insoluble, and non absorbed powder (given with 40-120 mL of water per dose), and potentially a tablet
- It requires no special handling or special preparation and does not have to be given in solution or with cathartics such as sorbitol.
- Several clinical trials have tested ZS-9
Crystal Structure of SZ-9.

Blue spheres = oxygen atoms, red spheres = zirconium atoms, green spheres = silicon atoms.
Clinical Studies Using Patiromer Sorbitex Calcium to Reduce Serum K Levels

<table>
<thead>
<tr>
<th>Study</th>
<th>Clinical Trial</th>
<th>Study Design</th>
<th>Participants</th>
<th>Endpoints</th>
<th>Baseline</th>
<th>Patiromer Therapy vs Placebo Reduction of K (< 96 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US Securities and Exchange Commission</td>
<td>RY5S016-101</td>
<td>Phase 1, randomized double-blind, placebo-controlled trial</td>
<td>Healthy volunteers, n = 33 (25/8)</td>
<td>Safety and tolerability, urinal and fecal patiromer excretion</td>
<td>No change</td>
<td>Significant dose-dependent increase in fecal potassium excretion and decrease in urinary potassium excretion at doses of 15-60 g/d compared with placebo.</td>
</tr>
<tr>
<td>US Securities and Exchange Commission</td>
<td>RY5S016-102</td>
<td>Phase 1, open-label trial</td>
<td>n = 12 (12/0)</td>
<td>Pharmacological activity, safety</td>
<td>Not placebo controlled</td>
<td>Significant increase in fecal potassium excretion and a concomitant decrease in urinary potassium excretion across the QD/BID/TID dosing regimen.</td>
</tr>
<tr>
<td>US Securities and Exchange Commission</td>
<td>RY5S016-103</td>
<td>Phase 1, single-blind trial</td>
<td>Patients with CKD and hyperkalemia, n = 15 (56/49)</td>
<td>Time to onset of potassium-lowering action</td>
<td>Not placebo controlled</td>
<td>First statistically significant change at 7 h. Mean K did not normalize by 48 h.</td>
</tr>
<tr>
<td>US Securities and Exchange Commission</td>
<td>RY5S016-201</td>
<td>Phase 2, proof-of-concept trial</td>
<td>Patients with hyperkalemia receiving hemodialysis, n = 6 (6/0)</td>
<td>Efficacy/safety of a fixed dose of patiromer</td>
<td>Not placebo controlled</td>
<td>Pharmacological action in reducing serum potassium levels and well-tolerated.</td>
</tr>
<tr>
<td>Pitt B et al.</td>
<td>RY5S016-202</td>
<td>Phase 2, prevention trial</td>
<td>Patients with HF receiving a RAAS inhibitor, ACE inhibitor, or ARB, n = 103 (56/49)</td>
<td>Efficacy/safety in preventing hyperkalemia</td>
<td>K 4.7 mEq/L (n = 55) or placebo (n = 49), BID for 4 wk, patiromer → reduction in K at 24 and 72 h, placebo → increase in K at 24 and 72 h.</td>
<td></td>
</tr>
<tr>
<td>Tamargo J et al.</td>
<td>RY5S016-204</td>
<td>Phase 2, prevention trial</td>
<td>Patients with CKD treated with a RAAS inhibitor, ACE inhibitors, ARB, n = 63 (36/30)</td>
<td>Efficacy/safety of a titration regimen in preventing hyperkalemia</td>
<td>AU</td>
<td>At the end of 8 wk, 91% of patients → 3.5.5 mEq/L; 84% of patients → 4.0.5.1 mEq/L.</td>
</tr>
<tr>
<td>Tamargo J et al.</td>
<td>RY5S016-205</td>
<td>Phase 2b, preventive trial</td>
<td>Hypertension patients with diabetic nephropathy treated with ACE inhibitors and/or ARB, n = 306 (306/0)</td>
<td>Efficacy/safety in treating hyperkalemia, determination of starting dose, and long-term safety in chronic treatment</td>
<td>AU</td>
<td>The primary outcomes were the changes in K from baseline to the end of the study, but results were not published.</td>
</tr>
<tr>
<td>Weir MR et al.</td>
<td>OPAL-HC</td>
<td>A 2-part phase 3 trial</td>
<td>Patients with hyperkalemia, CKD, HF receiving RAAS inhibitor therapy</td>
<td>Patiromer safety of patiromer, Part B: effect of withdrawing patiromer on control of serum potassium levels; mild hyperkalemia, K < 6.5 mEq/L, for moderate-severe hyperkalemia.</td>
<td>AU</td>
<td></td>
</tr>
</tbody>
</table>

Patiromer Effects in CKD Patients Receiving RAAS Inhibitors and Hyperkalemia

Time to First Occurrence of Hyperkalemia after Randomization

![Graph showing time to first occurrence of hyperkalemia after randomization.](image-url)
Clinical Studies Using Sodium Zirconium Cyclosilicate (ZS-9) to Reduce Serum K Levels

<table>
<thead>
<tr>
<th>Study</th>
<th>Clinical Trial</th>
<th>Study Design</th>
<th>Participants</th>
<th>Endpoints</th>
<th>Baseline</th>
<th>ZS-9 Therapy vs Placebo and Reduction of K (< 96 h)</th>
<th>ZS-9 Therapy vs Placebo and Reduction of K (> 96 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash SR et al.</td>
<td>ZS002</td>
<td>Phase II trial</td>
<td>Patients with hyperkalemia (K ≥ 6 mEq/L, eGFR (30-60 mL/min/1.73 m²), CKD, on RAAS inhibitor therapy (n = 90)</td>
<td>Rate of change in serum potassium from baseline over 48 h</td>
<td>K 5.6 mEq/L</td>
<td>ZS-9: 0.3, 3, or 10 g, TID for ≥ 2 d; at 3 and 10 g, ZS-9 produced a rapid decrease in K over the first 48 h; at 10 g, mean rate of decline in K was −0.68 mEq/L, and the maximum K was −0.92 mEq/L</td>
<td>None</td>
</tr>
<tr>
<td>Singh B et al.</td>
<td>ZS003</td>
<td>First phase III trial</td>
<td>Patients with hyperkalemia, regardless of etiology (CKD, DM, HF) on RAAS inhibitor therapy (n = 753)</td>
<td>Primary: rate of change in serum potassium from baseline to day 14</td>
<td>Acute phase: K 5.3 mEq/L</td>
<td>48-h induction phase: K*: 3.5-5.0 mEq/L</td>
<td>ZS-9: 5 g (n = 64) → K 4.7 mEq/L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Secondary: rate of change in serum potassium from 48 h to day 14</td>
<td>Extended phase: ZS-9 10 g (n = 30), K 4.5 mEq/L placebo (n = 30), K 4.5 mEq/L</td>
<td>ZS-9: 10 g (n = 63) → K 4.5 mEq/L Placebo (n = 129) → K 5.0 mEq/L</td>
<td>12-d maintenance phase</td>
</tr>
<tr>
<td>Packham DK et al.</td>
<td>ZS004</td>
<td>The HARMONIZE trial</td>
<td>Patients with hyperkalemia, regardless of etiology (CKD, DM, CHF) on RAAS inhibitor therapy (n = 258)</td>
<td>Primary: comparison of mean potassium from day 8 to day 28</td>
<td>K 5.6 mEq/L</td>
<td>Open-label induction phase: ZS-9 10 g (n = 237) → K 4.5 mEq/L (normal K 3.5-5.0 mEq/L) TID for 48 h</td>
<td>Double-blind randomized withdrawal phase (mean K < 5.18 mEq/L) QD for 28 d</td>
</tr>
<tr>
<td>Kosiborod M et al.</td>
<td>ZS005</td>
<td>Planned phase III trial</td>
<td>Patients with hyperkalemia (> 5.0 mEq/L) regardless of etiology (n = 600)</td>
<td>Primary: long-term safety and tolerability</td>
<td>> 5.0 mEq/L</td>
<td>48- to 72-h open-label acute phase: ZS-9: 10 g, TID for 48-72 h</td>
<td>ZS-9: 10 g, QD during 1 y (5-g dose titration if needed)</td>
</tr>
<tr>
<td>El-Shahawy M et al.</td>
<td></td>
<td></td>
<td></td>
<td>Secondary: proportion of patients normokalemia during induction phase and during 28-d maintenance period</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acute Dose-Effects of SZ-9 on Serum Potassium

Extended Dose-Effect of SZ-9 on Serum Potassium

Design of the HARMONIZE trial in CKD Ambulatory Patients with a Serum K level ≥ 5.1 mEq/L

Time Behavior of Serum Potassium Concentrations According to SZ-9 Dosage

Comparative Effectiveness of SPS, Patiromer Sorbitex Calcium and Sodium Zirconium Cyclosilicate According to Baseline eGFR

<table>
<thead>
<tr>
<th>Study</th>
<th>Lowering Serum Potassium Agents</th>
<th>Estimated Glomerular Filtration Rate (mL/min/1.73 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Lin Y-C et al³⁰</td>
<td>SPS</td>
<td>Control subjects (n = 72) Baseline eGFR 59 mL/min/1.73 m²</td>
</tr>
<tr>
<td>Weir MR et al²⁷</td>
<td>Patiromer calcium (RLY5016)³⁹</td>
<td>Placebo (n = 52) Baseline eGFR 39 mL/min/1.73 m²</td>
</tr>
<tr>
<td>Kosiborod M et al¹³</td>
<td>Sodium zirconium cyclosilicate (ZS-9)³⁹</td>
<td>Open-label phase (n = 258) Baseline eGFR 46 mL/min/1.73 m²</td>
</tr>
</tbody>
</table>

Comparison of Sodium Zirconium Cyclosilicate and Patiromer Sorbitex Calcium

<table>
<thead>
<tr>
<th>Mechanism and Administration</th>
<th>Sodium Zirconium Cyclosilicate</th>
<th>Patiromer Sorbitex Calcium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Inorganic crystal → selective potassium trap</td>
<td>Organic polymer → nonspecific binding of cations</td>
</tr>
<tr>
<td>Site potassium binding</td>
<td>Entire GI tract</td>
<td>Colon</td>
</tr>
<tr>
<td>Administration</td>
<td>Once daily</td>
<td>Twice daily</td>
</tr>
<tr>
<td>Daily drug total (g)</td>
<td>5-10</td>
<td>21-35</td>
</tr>
<tr>
<td>Volume expansion</td>
<td>None</td>
<td>Swelling (H₂O absorbed)</td>
</tr>
<tr>
<td>Storage</td>
<td>Room temperature</td>
<td>2-8°C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficacy</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time of Onset (h) @ 4 h [baseline potassium > 5.5 (mEq/L)]</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Median time to normalization (h)</td>
<td>2.2</td>
<td>> 48 (estimated 1 wk)</td>
</tr>
<tr>
<td>Response rate</td>
<td>98% at 24 h</td>
<td>76% at 1 mo</td>
</tr>
<tr>
<td>Potassium level maintained (mEq/L)</td>
<td>4.5 (5-10 g QD)</td>
<td>4.6 (17.5 g BID)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal adverse event rate</td>
<td>3.5%</td>
<td>19%</td>
</tr>
<tr>
<td>Open-label phase</td>
<td>6% vs 14% for placebo</td>
<td>13% vs 6% for placebo</td>
</tr>
<tr>
<td>Randomized phase</td>
<td>None</td>
<td>10 g for every 21 g of polymer</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>None</td>
<td>~ 4 g calcium load but small amounts absorbed, may bind PO₄</td>
</tr>
<tr>
<td>Calcium</td>
<td>None</td>
<td>No significant changes</td>
</tr>
<tr>
<td>Magnesium</td>
<td>No hypomagnesia</td>
<td>24% with Mg²⁺ < 1.8 mg/dL</td>
</tr>
<tr>
<td>Fluoride</td>
<td>No impact</td>
<td>Increased serum fluoride</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>↑ 2.3 mEq/L in 15 d</td>
<td>No significant changes</td>
</tr>
<tr>
<td>Blood urea nitrogen</td>
<td>↓ Potentially due to binding of ammonium</td>
<td>No significant changes</td>
</tr>
<tr>
<td>Drug-drug interaction</td>
<td>None</td>
<td>Valsartan and rosiglitazone</td>
</tr>
<tr>
<td>Sodium absorption</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Safety Results for Sodium Polystyrene Sulfonate, Patiromer Sorbitex Calcium, and Sodium Zirconium Cyclosilicate

<table>
<thead>
<tr>
<th>Adverse Events</th>
<th>Sodium Polystyrene Sulfonate (n = 58)</th>
<th>Patiromer, Dose Group 1 (4.2 g, BID for Mild Hyperkalemia) (n = 92)</th>
<th>Patiromer, Dose Group 2 (8.4 g, BID for Moderate to Severe Hyperkalemia) (n = 151)</th>
<th>Sodium Zirconium Cyclosilicate, (n = 258)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open-label Treatment Phase†</td>
<td>Open-label Treatment Phase†</td>
<td>Open-label Treatment Phase†</td>
<td>Open-label Treatment Phase†</td>
</tr>
<tr>
<td>Death, n (%)</td>
<td>19 (33)</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Necrosis, n (%)</td>
<td>35 (62)†</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Ulceration, n (%)</td>
<td>23 (48)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Perforation, n (%)</td>
<td>5 (9)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Abdominal pain/tenderness, n (%)</td>
<td>33 (57)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Nausea/vomiting</td>
<td>6 (11)</td>
<td>4 (4)</td>
<td>4 (3)</td>
<td>NR</td>
</tr>
<tr>
<td>GI bleed, n (%)</td>
<td>9 (22)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Diarrhea, n (%)</td>
<td>3 (7)</td>
<td>2 (2)</td>
<td>6 (4)</td>
<td>3 (1.2)</td>
</tr>
<tr>
<td>Constipation, n (%)</td>
<td>NR</td>
<td>9 (10)</td>
<td>17 (11)</td>
<td>2 (0.8)</td>
</tr>
<tr>
<td>Cardiac failure, congestive</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>Remote left ventricular infarct and cardiomegaly in a case report†</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Left ventricular hypertrophy</td>
<td>NR</td>
<td>0 (0)</td>
<td>6 (4)</td>
<td>NR</td>
</tr>
<tr>
<td>Atrioventricular block</td>
<td>NR</td>
<td>0 (0)</td>
<td>4 (3)</td>
<td>NR</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>NR</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>NR</td>
</tr>
<tr>
<td>Hypertension</td>
<td>NR</td>
<td>1 (1)</td>
<td>3 (2)</td>
<td>NR</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>NR</td>
<td>2 (2)</td>
<td>5 (3)</td>
<td>NR</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>NR</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>NR</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>NR</td>
<td>3 (3)</td>
<td>5 (3)</td>
<td>NR</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>NR</td>
<td>4 (4)</td>
<td>2 (1)</td>
<td>NR</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>NR</td>
<td>1 (1)</td>
<td>3 (2)</td>
<td>NR</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td>NR</td>
<td>1 (1)</td>
<td>3 (2)</td>
<td>NR</td>
</tr>
<tr>
<td>Anemia</td>
<td>NR</td>
<td>4 (4)</td>
<td>3 (2)</td>
<td>NR</td>
</tr>
<tr>
<td>Edema</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>
Outline of the Presentation

1. Chronic hyperkalemia: a common and serious problem in CKD patients
 - Patients at risk
 - Risks and complications

2. Chronic hyperkalemia: indirect consequences – clinical concerns
 - Limit usage of medications protecting kidney and cardiovascular system

3. Monitoring of chronic hyperkalemia: pitfalls and errors

4. Managing chronic hyperkalemia in CKD patients
 - Traditional ways
 - New tools

5. Take home message
Limitations and Remaining Questions

- No head-to-head randomized, controlled trials of two or more agents (novel agent vs novel agent or versus sodium polystyrene sulfate)
- Acute emergency treatment of hyperkalemia have not been tested with these novel agents
- In the setting of acute kidney injury, effects of patiromer or ZS-9 have not been evaluated
- Alternative routes of administration (nasogastric tube or rectal administration, enema) for these novel agents have not been tested to date
- Long term treatment (months to year) of hyperkalemia with these novel K binders has not explored
- Most common clinical indications of hyperkalemia that requires treatment have not been evaluated in clinical trials
- Long-term safety and efficacy of these new K binders cannot be inferred today
- Cost-effectiveness has not been addressed
Conclusions

• Novel therapies, including the polymer **patiromer sorbitex calcium** and **sodium zirconium cyclosilicate** trap, are promising both as acute medications and as adjunctive therapies for hyperkalemia.

• Novel therapies may allow greater use of **RAAS** (ACE inhibitors, ARBs, and MRAs) and **Aldosterone Blockade** in vulnerable patients (hypertensive, CKD, Cardiac...).

• Remaining questions to be addressed in long term studies:
 - Patient acceptance,
 - Long term safety,
 - Best use,
 - Cost-effectiveness